Comment Summary and Responses Calleguas Creek Watershed Metals and Selenium TMDL

CEQA Scoping Meeting
1. Keith Jones and Daniel Apt, Caltrans/RBF; Mark Pumford, City of Oxnard;
Arne Anselm, City of Thousand Oaks; Anita Kuhlman, City of Camarillo;
William Seaver, Calleguas MWD
Peer Review
2. Theo A. Dillaha
3. Dr. Rhea L. Williamson
Public Review
4. Camrosa Water District on behalf of Camarillo Sanitation District, City of
Thousand Oaks, City of Simi Valley, Camrosa Sanitary District, and Ventura
County Water Works District #1
5. Heal the bay
6. California Department of Transportation

No.	Author	Date	Comment	Response
CEQA Scoping Meeting 1/26/06: Caltrans, City of Thousand Oaks, City of Camaril				guas Creek MWD, City of Oxnard
1.1			What would happen to the TMDL if the 303(d) listing	Regional Board staff understand that the 303(d) listing
			is changed	for Calleguas Creek watershed will remain the same
				except for zinc. Stakeholders have sought delisting of
				zinc from the 303(d) list for Reach 1, Mugu Lagoon
				because recent available data suggest zinc is not
				causing impairment. Regional Board staff understand
				that State Board may consider the delisting request in
				the 2006 303(d) list. The TMDL Implementation Plan
				clairifies that hould zinc not be delisted by the end of

No.	Author	Date	Comment	Response
				the 303(d) listing cycle following the effective date of this TMDL, zinc wasteload and load allocations will be developed within one year.
1.2			There is inconsistency in applying federal law. Federal law requires adoption of TMDLs, not the implementation portion of the TMDL	While federal law does not require U.S. EPA approval of TMDL implementation plans, upon establishment of TMDLs by the State or U.S. EPA, the State is required to incorporate the TMDLs along with appropriate implementation measures into the State Water Quality Management Plan (40 CFR 130.6(c)(1), 130.7). This Water Quality Control Plan for the Los Angeles Region (Basin Plan), and applicable statewide plans, serves as the State Water Quality Management Plans governing the watersheds under the jurisdiction of the Regional Board. The State must also ensure that effluent limitations in NPDES permits are consistent with the assumptions and requirements of any available waste load allocations. (40 CFR 122.44(d)(1)(vii)(B).)
1.3			MS4 and Caltrans might not be able to meet the CTRs if only end of pipe actions such as BMPs are used. It may require treatment devices to meet the CTRs.	Regional Board staff note that structural treatment devices should be considered in addition to low cost controls such as efficient street sweeping, public education, business inspections, and existing storm water programs to meet the proposed numeric targets, if necessary.
1.4			CEQA: Catch basin and constructed wetland might affect wildlife	Regional Board staff note that some of the diversion strategies considered could result in reduced creek flows, particularly during dry weather, which may have an adverse impact on wildlife. The agencies responsible for implementing the TMDL should consult with

No.	Author	Date	Comment	Response
				agencies such as the California Department of Fish and Game to develop strategies to prevent such impacts to these resources and the National Marine Fisheries Service to determine minimum base flows to be maintained in the creek to protect these resources. In the event that maintaining these flows will not achieve compliance with TMDL requirements, an alternative treatment and return strategy can be considered
1.5			CEQA: The proposal may result in changes or substantial alterations in drainage system.	Regional Board staff agree that the TMDL may alter the draiage system. In order to achieve compliance with the TMDL, storm water drainage systems may need to be retrofitted with structural BMPs or re- configured to divert and/or capture and treat a portion of storm water. These alterations will have a positive environmental impact with the resulting reduced pollutant loads from urban and storm water runoff. The construction of these retrofits, however could have significant short-term impacts that can be mitigated by standard construction methods.
1.6			CEQA: The proposed project would substantially result in alteration of the direction or rate of flow of ground waters	A change in the rate of flow of ground waters may occur if compliance with the TMDL is achieved through significant infiltration of storm water. However, Regional Board staff do not find data to show that the proposal "would substantially result in alteration of the direction and reate of groundwater flow." When properly managed, increased groundwater recharge would be considered a positive impact by the proposal as it would contribute to replenishing local water supplies. Groundwater quality standards are available to evaluate impacts from using

No.	Author	Date	Comment	Response
				urban runoff containing contaminants for groundwater recharge. Standard treatment technologies are available for wastewater treatment to reduce contaminant levels prior to recharge. Applicable and appropriate mitigation measures will be evaluated when specific projects are determined.
1.7			CEQA: 100-year flood plan for Calleguas Creek will be changes in the near future. The proposed flood plan will expand the 100-year flood hazard areas and will cause the Calleguas Creek and Conejo Creek to merge. This will effect the implementation of this TMDL. The Regional Board should take this into consideration. proposed flood plan will result in impact on existing recreation	Comment noted. However the effects of the proposed flood plan should be addressed by responsible agency at the time implementation actions are put into place.
1.8			Currently there is no technology available to achieve CTR value for copper. In addition, it is very difficult to achieve numeric target for selenium from current loadings including natural sources.	It is acknowledged that some of the standard may not be met due to natural sources. The TMDL provides an option of dischargers to pursue natural source exclusion studies during the TMDL implementation.
1.9			CEQA: The proposed project may have effect on land use and planning	Depending on the implementation strategy chosen, the proposal may result in alteration of the present or planned land use of an area to provide land for storage, diversion or treatment facilities for agricultural runoff water. However, projects may be designed to increase parks and wildlife habitat areas and to improve water quality. Potential conflicts between the TMDL and other land uses can be resolved by standard planning efforts under which specific projects are reviewed by local planning agencies. Applicable and appropriate mitigation measures will be evaluated when specific

No.	Author	Date	Comment	Response
				projects are determined.
1.10			CEQA: The proposed project may result in increases in existing noise levels	The proposal may result in increases in existing noise levels, particularly in the case of construction of storage, diversion or treatment facilities for storm water. The potential for increased noise levels due to construction is limited and short-term. Short-term noise impacts can also be mitigated by implementing noise abatement procedures, standard construction techniques such as sound barriers, mufflers and restricted hours of operation. Applicable and appropriate mitigation measures will be evaluated when specific projects are determined.
1.11			CEQA: The proposed project may have effect on utilities and services systems including water system and storm water drainage system.	A reduction or elimination of irrigation water containing high selenium concentration and providing alternative water supply might be required to achieve final load allocations. However the need of alternative water supply can be minimized by using BMPs such as cover crops to increase infiltration, reduce surface runoff of water and evaporation from soil surfaces, and result in no or little net change in irrigation water needs. In order to achieve compliance with the TMDL, storm water drainage systems may need to be retrofitted with structural BMPs or re-configured to divert and/or capture and treat a portion of storm water. These alterations will have a positive environmental impact with the resulting reduced pollutant loads from urban and storm water runoff. The construction of these retrofits however could have significant short term

No.	Author	Date	Comment	Response
				impacts that can be mitigated by standard construction
1 12			CEOA: The proposed project may cause traffic delay	Regional Board staff agree Depending on the
1.12			when implementing BMPs.	implementation strategy chosen, the proposal may
				result in temporary alterations to existing transportation
				systems during construction of storm water diversion or
				treatment facilities. Potential impacts are limited and
				short-term. Potential impacts could be reduced by
				limiting or restricting hours of construction so as to
				avoid peak traffic times
1.13			Need daylight the methodology to implement the	Comment noted. The economic analysis section has
			IMDL Economic impact of this IMDL	been updated to discuss about the economic impact of this TMDL in grapter datail. See Technical Depart
				document section 13.0
1 14	Keith Iones	2/6/06	The State has no obligation or authority to perform a	Regional Board staff do not agree that the "data
1.17	Caltrans/RBF	2/0/00	TMDL for waters not included on the 303(d) List	analysis is distorted." The commenter does not
			RWQCB and U.S. EPA did not present sufficient	describe the manner in which the data analysis is
			information to justify the inclusion and regulation of all	distorted. The Calleguas Creek metals and selenium
			metals in all reaches, as instructed by U.S. EPA in	TMDLs were prepared for listed pollutants in impaired
			letters written as part of the Trash TMDL settlement	reaches. In the case of copper and nickel, freshwater
			(May 6, 2003). The data analysis is distorted and does	column targets are less stringent than saltwater water
			not support the inclusion of non-listed metals. The	column targets and freshwater targets are not exceeded
			IMDL should be scaled back to apply only to impaired	in fresh water reaches. Freshwater streams with higher
			reaches	targets flow downstream into listed reaches including
			icacitos.	Mugu Lagoon Revolon Slough and Lower Calleguas
				Creek where saltwater criteria apply and loading
				capacities are lower. Assigning allocations based on the
				freshwater targets for discharges to freshwater reaches

No.	Author	Date	Comment	Response
				would not result in achievement of the saltwater targets
				in the lower reaches. Therefore, the allocations were
				developed based on the freshwater load which actually
				flows to the saltwater reaches and to account for any
				dilution or removal of loads that may occur between
				the discharge and the portion of the watershed to which
				the saltwater criteria apply. (See Technical Report
				Document)
1.15			The installation of treatment BMPs will only treat to	Staff is working on the issue of defining a maximum
			the water quality volume/flow they have been designed.	volume or storm event size through the wet-weather
			There will always be storm events which will	task force. Based on the task force's recommendation,
			overwhelm treatment BMPs and thus treatment will not	staff will bring the definition of a storm that will
			be provided. This is not something that requires	address multiple TMDLs to the Board for their
			direction from the Regional Board.	consideration as a Basin Plan amendment.
1.16			The TMDL report's economic analysis needs to be	Comment noted. See Technical Report document,
			expanded. The Department performed an extensive	section 13.9 for detail. The economic analysis section
			Retrofit Pilot Study in which several types of structural	has been significantly updated. Revised cost estimates
			BMPs were installed. The construction cost for	are in line with the values presented by commentor.
			biofiltration swales averaged \$752 per m3 of WQV.	
			The construction cost for extended detention basins	
			averaged \$590 per m3 of WQV. The construction cost	
			for infiltration basins averaged \$369 per m3 of WQV.	
			These costs do not included operation and maintenance	
			cost, which can be substantial. The operation and	
			maintenance cost for 20 years at a discount rate of 4%,	
			the present worth total cost per m3 of WQV would be	
			\$826 for biofiltration swales, \$450 for extended	
			detention basins and $6/3$ for infiltration basins. These	
			Retrofit Pilot Study cost may not reflect typical	
			installations that will occur with the watershed. The	

No.	Author	Date	Comment	Response
			sites in the Pilot Study were selected to avoid traffic conflicts, and need for right of way purchase. Cost could escalate 150% to 300%, as shown in the recent bids for the GSRD project locations in Los Angeles.	
1.17			While the Department continues to work with the Brakepad Partnership, source control of Copper in brake pads is beyond the control of the Department, or any discharger. The Department, nor any of the dischargers have the authority to require consumers to use alternative materials. It will take action at the state and federal level to have any meaningful change in the material used for brake pads.	Comment noted and footnote added to discussion in economic section.
1.18			A means for calculating compliance for source control measures should be developed. The Daily Generation Rate may not be appropriate. For example, if the Department increases sweeping frequency for several years, and a large storm event occurs and mobilizes sequestered sources (potentially from median) then use of the DGR may show that sweeping was ineffective.	Comment noted. The implementation plan calls for development of an UWQMP in which Caltrans and the other dischargers can propose a method for showing progress towards compliance with the allocations.
1.19			The Department is concerned with the adoption of the water effects ratio (WER) for copper and the site specific objectives (SSO) for the other constituents as these will have an impact on the ultimate requirements of the TMDL. We will be interested in reviewing these again when available.	Comment noted. The proposed WER will be made available for public review in advance of consideration by the Regional Board.
1.20			The Department requests information on the concentrations used in the model for various land uses, we would like to look at closer.	Requested information was sent from LWA to Keith Jones in February 2006.

No.	Author	Date	Comment	Response
Peer Re	view			
2.1	Theo A.	4/8/06	In general, I found the TMDL to be scientifically	Comment noted
	Dillaha		reasonable. As in many TMDLs, there was inadequate	
			historical flow and water quality monitoring data	
			available for rigorous model parameter development,	
			calibration, and validation. Consequently, there is a	
			high degree of uncertainty in the model predictions and	
			the resulting numeric targets developed fro the	
			Calleguas Creek TMDLs. The TMDL developers	
			adequately compensated for the lack of data by	
			selecting very conservative model parameters that	
			generally resulted in overestimates of contaminate	
			concentrations and loads. In my opinion, the	
			conservative model parameters and model calibration	
			probably result in a implicit margin of safety on the	
			order of 20 to 40%. I believe that this margin of safety	
			is reasonable and desirable given the lack of available	
			data for model calibration. Based on my analysis of the	
			Calleguas Creek TMDL documents that I reviewed, it	
			is my best professional judgment that the achievement	
			of the proposed numeric targets, WLAs, and LAs will	
			bring the waters of Calleguas Creek Watershed into	
			compliance with applicable California water quality	
			criteria. Because of the conservative assumptions used	
			in the development of the TMDL, I believe that many	
			of the water quality criteria will be achieved before the	
			specified WLAs and LAs are achieved.	
2.2			Attachment A to Resolution NO. R4-2006-XXX:	
			a. Page 6, 2^{nd} and 3^{rd} tables: unit (lbs/day?) are	Regional Board staff agree, changes are made. Please
			missing or dry and wet weather WLAs in water	refer to revised BPA, Attachment A

No.	Author	Date	Comment	Response
			column and for daily storm volume Q (ft ³ ?)	
			b. Page 8, 3 rd table: units missing daily storm volume	
			$Q(ft^3)$	
2.3			Land use in the watershed is poorly described. Making	Additional land use description will be added to the
			it more difficult to provide context for pollutant sources	Technical Report document.
2.4			"Percent" used throughout report when percentage is	Comment noted.
			grammatically required.	
			Page 75-76. Modeling of sediment erosion using	The RUSLE analysis was conducted as a secondary
			RUSLE and a simplified version of a sediment delivery	check on other calculations. Commentor is correct in
			model (SEDMOD) is described and used to develop	observing the models and resulting numbers in Table
			Table 42. Not sure what the purpose of this analysis is	42 are not used in the TMDL, so this does not impact
			and there is so much uncertainty in the presented loads	the proposed TMDLs for metals and selenium.
			that I am not sure they are useful for anything. The	
			description of the methods involved is so vague that it	
			is difficult to evaluate the science involved. Without	
			more detail, it appears that the USLE model rather than	
			RUSLE was actually implemented in the GIS. Lack of	
			information on how the LS factor was implemented in	
			the GIS is a cause for concern since USLE (and	
			RUSLE for that matter) is extremely sensitive to slope-	
			length (L). Similar concerns exist with the	
			simplifications made to the SEDMOD sediment	
			delivery model. Reducing its term just to simplify	
			implementation in the GIS is not adequately justified.	
			Consequently, the background natural load numbers in	
			Table 42 are fairly meaningless. A more scientifically	
			defensible estimate of natural loadings could have been	
			obtained by using the calibrated HSPF model with the	
			anthropogenic sources turned off to estimate the natural	

No.	Author	Date	Comment	Response
			background loadings. The models and resulting	
			numbers in Table 42 are not used in the TMDL, so this	
			does not impact the proposed TMDLs for metals and	
			selenium.	
2.5			Page 142, Figure 56: Units missing from y-axis. X-	Staff agree. Figure 56 will be revised to address
			axis would be understood by more readers if expressed	comment.
			as % exceedance.	
2.6			Page 142, Table 63 and following sentence: The	Staff agree. Text will be revised to reflect the results in
			sentence "As shown I" is not true. For both	the table.
			Revolon and Calleguas, the critical condition for nickel	
			is in the average flow range. Rewrite the sentence.	
2.7			Page 145, Table 65: Units of daily storm volume, Q,	Staff agree. Units of cfs will be specified in all tables
			not specified.	where Q is referenced.
2.8			Page 145 and 146, Tables 67 and 68: Are headings of	Comment noted. Column heading will be changed. All
			column 4 mislabeled? Shouldn't they be "Total	of the values are shown in this table so the reader can
			Loading Capacity Equation (lbs/day)"? Also why not	see the components of the equation. The values are
			multiply the equation out to simplify	multiplied out in the allocation tables.
2.9			Page 146, Tables 69 and 70: Missing units under	Staff agree. Units will be added.
			targets (ug/L).	
2.10			Page 147, 1 st paragraph: Where does the "46%"	The 46% reduction results from a comparison of wet
			reduction for copper comes from? Is there a table (s) or	weather model results to the corresponding criteria. A
			figure(s) to support the statement? If so, specify.	table or figure is not included in the text, but the
				analysis is available as part of the administrative
				record.
2.11			Page 148 and 149, Tables 72 and 73: Include "Dry	Dry weather will be included in the table captions
			Weather" in captions	
2.12			Page 149, next to last paragraph: Modify to:	Comment noted. Change made to the text
			"resulting equation by the fraction of the load	
			attributable to the source and 1.0 plus the margin safety	

No.	Author	Date	Comment	Response
			expressed as a fraction."	
2.13			Page 150 and 151, Tables 74 and 75: Why are the WLA for hill Canyon and Camarillo the same? Daily discharges are very different, 10.2 and 6.76 MGD, respectively.	Camarillo has significantly higher copper concentrations than Hill Canyon and the resulting loads happen to calculate to the same value (with rounding)
2.14			Page 153: Table 78: Are final LAs and WLAs really the same for both agricultural and urban sources? Is the coincidence or typos	The allocations shown in the tables represent the value that the sum of all loads cannot exceed. In the revised report, these allocations have been adjusted to be more clear.
2.15			Page 153, Table 79: Units missing form Table caption. Are interim dry daily and monthly LAs really the same for agriculture and then for urban sources in both watersheds? Is the coincident or typo?	Unit will be added. Because the agricultural and urban characterization data used to develop the interim allocations is not specific to one subwatershed, the interim allocations are the same across all of the subwatersheds. The characterization data was considered representative of the entire Calleguas Creek watershed.
2.16			Page156, TMDL equation: Need parentheses around 1- PR. Conversion factor, f, should be 1.67E-06 according to my calculations. If I am correct, is this a typo or is the wrong conversion factor used developing the mercury TMDL?	Parenthesis added to (1-PR). Wrong conversion factor was not used in developing the mercury TMDL. The conversion factor used in calculation of the TMDL was 1.97e-6. The incorrect value for f shown on page 156 was calculated separately from the actual TMDL calculations, and has been corrected per TMDL calculations and per comment. Calculation sheet used to generate WLAs and LAs has been provided to Regional Board, for assurance that correct conversion factor was used in calculating WLAs and LAs.
2.17			Page 157, line 19: Change to "current load* (1- percentage reduction/100)	Revised per comment
2.18			Page 157, last paragraph: First sentence has	Revised per comment

No.	Author	Date	Comment	Response
			grammatical problems. Reasoning in paragraph is questionable. Better logic is that bedload is not	
			considered because it is composed of coarser sediment	
			particles (sand and gravel) that mercury does not	
			adsorb to. Suspended sediment contains the particle	
			sizes that are responsible for mercury transport.	
2.19			Page 159, Figure 57: Eliminate bad figure caption at	Comment noted
			the top of the figure box.	
2.20			Page 159, Figure 58: Eliminate bad figure caption at	Comment noted
			the top of the figure box. Include low and medium	
			annual flow lines in figure for clarity.	
2.21			Page 160, Section 10.4, first sentence: Should be	Comment noted
			changed to "the total load of mercury is proportional	
			approximately equivalent to the suspended sediment load	
2.22			Page 160, next to last paragraph: Anthropogenic	Staff agree that anthropogenic sources of mercury
			mercury also comes from undeveloped open space due	include atmospheric deposition, which may be
			to atmospheric deposition. Was this mercury	deposited in undeveloped open space.
			considered?	
2.23			Page 160, last paragraph: GIS analysis did not utilize	Staff agree. Technical Report will be revised per
			flow data. Delete "and flow data". I do not see the	comment.
			benefit of using GIS generated mercury load. Not	
			scientifically reasonable to arbitrarily assume that	
			sediment loss is simply proportional to area (fraction of	
			undeveloped land). Sediment loss is greater when the	
			and is disturbed. Undeveloped land would be	
			disturbance (natural cover and armoving).	
			the reference to data from Table 42 on page 76. It is	
	1		ine reference to data from 1 able 42 on page 76. It is	

No.	Author	Date	Comment	Response
			not needed	
2.24			Page 162, Table 84: Puzzling that mercury loads in agricultural and urban runoff are so similar. I would expect much higher sediment losses from the agricultural areas. Unless the mercury concentrations in the urban soil are proportionally higher, this is puzzling. Need to check soil losses and mercury concentrations in soils of agricultural and urban areas to see if this makes sense.	Staff agree that sediment runoff is not strictly proportional to area. However, the overwhelming source of mercury to the watershed is via atmospheric deposition, so on a per area basis the land uses are similar.
2.25			Page 162, Tables 84 and 85: Why are the interim LAs in Table 85 higher than the current LAs in Table 84?	As explained in the table note for Table 85, the interim load allocations are set equal to the highest annual load within each flow category, based on HSPF model output for the years 1993-2003. The purpose of this is to account for the large variance in loads from year to year, which is associated more closely with environmental conditions such as precipitation than with human activities.
2.26			Page 162, Table 86: How Table 86 is used in determining interim limits needs to be explained. Column headings need to be clarified 'Mercury in Suspended Sediment''	The explanation is in the table note for Table 85 (and in response, above). Column headings revised per comment.
2.27			Page 164, 4 th bullet: Not clear that this statement is correct. Some of the mercury losses from the open space land are due to anthropogenic atmospheric deposition, not natural soil concentrations. The two should be separated and defined before making this statement. That said, the reality of the situation is that it may not be socially or economically feasible to achieve 80% reductions in mercury losses from	Comment noted. Separate definitions will be included in the Technical Report document. Regional Board staff agree that 80% reductions in mercury losses from anthropogenic and/or natural sources can not be accomplished by reducing anthropogenicsources alone.

No.	Author	Date	Comment	Response
			anthropogenic and/or natural sources	
2.28			Page 165, Table 88: Relative difference in what values? Are these comparisons between individual concentration values? If so, it would be useful to indicate how many samples the relative differences are based on. Need more explanation of data in table. Fairly consistent and systematic over prediction for copper and mercury. Since most of the estimated mercury loading comes from the largest storms, and the table suggests that the model may over estimate loading by 100%, required mercury reductions may be much less than the estimated 80%	Language will be revised for greater clarity. Attainment of numeric targets is the measure of success for the TMDL. If numeric targets are achieved before the WLAs and LAs are achieved, the TMDL may be reopened (per language included in the Implementation Plan).
2.29			Technical Memorandum: No information or data is presented on the hydrology calibration results for the CCWM. Lack of information on the hydrology calibration results makes it some what difficult to evaluate the TSS, metals and the selenium calibrations.	Comment noted. The CCWM hydrology was calibrated separately by Aqua Terra. The calibration results are "good to very good". Aqua Terra calibration report is available from the website, <u>www.calleguascreek.org</u> .
2.30			Page 26: Reference for Chang (2004) is missing from references	Reference will be added
2.31			Page 27-29: Figures indicate that the calibrated CCM model is over estimating measured sediment concentrations by a factor of 2.1 to 3.3. This is justified based on similarities to alternative estimates of annual sediment yields by Chang (2004) and an unspecified NRCS/SCS study(s); however no information on the scientific basic of either estimate is presented on which to judge their scientific validity. More background is needed on these estimates.	Comment noted. Also at issue is the measured data for TSS are a mix of grab and storm composite samples. The HSPF model ran on a 1 hour time step and daily average concentrations were used to compare to available data, the measured data were expected to be smaller than the model calculations. More explanation of Chang (2004) and the NRCS/SCS covered within Change (2004) will be added to the TMDL.

No.	Author	Date	Comment	Response
2.32			Page 31-37: CCWM seems to consistently grossly over	Comment noted
			predict total copper concentrations. Possible	
			consequence of over prediction of TSS or potency	
			factor. Dissolved copper concentrations are generally	
			predicted well	
2.33			Page 39-45: CCWM seems to generally over predict	Comment noted
			total nickel concentrations. Possible consequence of	
			over prediction of TSS or potency factor. Dissolved	
			nickel concentrations are generally predicted well.	
2.34			Page 47-50: CCWM seem to consistently over predict	Comment noted
			total mercury concentrations. Possible consequence of	
			over prediction of TSS or potency factor. Dissolved	
			mercury concentrations are generally predicted well	
2.35			Page 52-55: CCWM seems to predict total selenium	Comment noted
			concentrations well	
3.1	Dr. Rhea L.	4/23/06	Overall, this document is per guidance provided in the	Comment noted
	Williamson		cover letter, comments are held to addressing the	
			scientific portions of the proposed TMDL amendment,	
			for the most part. It is recommended that both	
			documents be reviewed for grammar, use of complete	
			sentences, etc as there are numerous errors throughout.	
			When such errors affect the content of the statement, I	
			mention them in the specific comments section below,	
			but otherwise do not point out each one.	
3.2			Of concern is the determination of the allowable metals	Comment noted. Commentor is correct in stating the
			and selenium concentrations with little to no discussion	local aquatic chemistry influences the metal speciation
			of the temporal (seasonal and diel) and spatial	and mercury methylation rates. Total suspended solids
			(horizontal and vertical) variations of general water	(TSS) and organic carbon concentrations are noted in
			quality parameters that affect metal speciation and	USEPA guidance (Translator guidance) as the two

No.	Author	Date	Comment	Response
			mercury methylation, including dissolved oxygen levels (especially in Mugu Lagoon), pH, turbidity (NTU), salinity, solids concentrations, etc. None of these water quality parameters were discussed or provided in summary form in the document.	most likely lumped parameters relating partitioning to water quality. Early in the TMDL development the HSPF model was selected for use in the TMDL development. The only available speciation mechanism in HSPF is a linear partitioning model keyed to TSS. Because the model only incorporated TSS in the portioning, the effects of other water quality parameters on the metals speciation were not considered. However, the partition coefficient was calculated per subwatershed thereby allowing the model to account for some variation in the local water chemistry, albeit in the lumped partition coefficient. Mercury methylation was not considered at this time as there is grossly inadequate information on methlymercury in the watershed.
3.3			There are considerable concerns about the simplifications and assumptions used in dealing with data gaps, non-detects, etc. Part of the concern is that while the issues are mentioned throughout the document, the data that are assumed, estimated, or calculated (sometimes with multiple assumed values for parameters in a calculation) are then treated as actual data. The proposed numeric targets are based on limited data, and focus much on average or median values based on limited sampling across the entire subwatersheds.	Comment noted. Calculations, assumptions, and estimations were performed out of necessity to fill-in missing information or perform the analyses needed to calculate the TMDL. Each calculation, assumption, and estimation was considered and evaluated, and the variation in the final answer used to determine the margin of safety (MOS).
3.4			The proposed numeric targets are based on limited data, and focus much on average or median values based on limited sampling across the entire subwatersheds.	Comment noted. Staff agree that the data were too limited to perform an ideal TMDL analysis. However, the goal of the TMDL was to perform the best analysis possible with the information at hand, and include a

No.	Author	Date	Comment	Response
				strong monitoring and future revisiting of the TMDL as
				major components in the implementation.
3.5			Page 2: Figure 1 includes the reach names. The names	Reach 1 is Mugu Lagoon. The reference to "Calleguas
			used in the text of the report vary from those used in	Creek" on page 23 was correct, but unclear. The
			this Figure, causing some confusion for the first time	reference has been re-written/clarified. Beardsley
			reader. For example, Reach 1 is Mugu Lagoon on the	Wash and Beardsley Channel are two names often used
			figure, but Calleguas Creek in the text (bottom of page	to describe Reach 5, which is just upstream of Revolon
			23); Beardsley Wash in the figure is Beardsley Channel	Slough. The technical report will be changed to refer
			in the text, etc.	to one or the other, and a note added explaining both
				names are commonly used to refer to Reach 5.
3.6			Page 5, Table 2: Reach numbers appear to be incorrect.	The reaches are correct, as named in the consent decree
			Conejo Creek includes reaches 9A, 9b, and 10. Arroyo	(which used previous reach names). Current reach
			Simi is reach 7.	names were added to the table, for clarification. See
				additional information at,
				http://www.waterboards.ca.gov/losangeles/html/progra
				ms/regional_program/wmi2004/Impaired%20Waters%
				20by%20Watershed/Calleguas%20Creek%20Watershe
				d%20303d%20Waters.doc
3.7			Page 11, paragraph 4: The impact of flow diversion	The modeling and the allocation development
			projects is described and it is stated that such diversions	considered the impact of the flow diversion. The flow
			resulting in changes in flow need to be considered	diversion was included in the model and all model runs
			when establishing the TMDLs. This does not happen.	that were conducted. For allocations for treatment
			Wet and dry weather TMDLs were calculated (pg 142)	plants and urban and agricultural discharges upstream
			using the median flow rates for current flow conditions	of the diversion, current flows were used. It is not
			to address seasonal variation, but do not consider the	possible to determine what portion of each source is
			impact of new diversion projects.	diverted and what portion remains in the stream after
				the diversion. Therefore, the reductions for sources
				upstream of the diversion were developed with current
				flows and the allocations checked to ensure they would

No.	Author	Date	Comment	Response
				meet standards downstream of the diversion.
3.8			Page 14, Section 2.3: The beneficial uses of Calleguas	The aquatic life criteria are more stringent than criteria
			Creek water for agriculture and industry are missing	for other uses, so there is little utility in discussing the
			from the discussion. This is important in that	AGR or IND use criteria when aquatic life is
			discussion of the impacts of both of these uses on	controlling. Agriculture and industrial (in terms of a
			loading of metals and selenium are limited in latter	percentage of urban) sources are identified as major
			parts of the document.	sources of the metals in the TMDL.
3.9			Page 21: Conc. Of Metals and Selenium in Mugu	The effects of receiving waters in the watershed on the
			Lagoon section. Data for metals concentrations over	Lagoon are implicitly considered because the receiving
			time in other reaches are not "implicitly considered" as	waters ultimately terminate in the lagoon. It is agreed
			Mugu Lagoon has a salinity of 32ppt, is characterized	that the available data do not warrant a definitive
			as wetland and marsh habitat, has elevated sulfate and	statement on whether Lagoon concentrations are
			sulfide concentrations, and as a result, has likely	increasing, decreasing, or remaining the same. The
			increased inorganic and organic metal complexes	implementation component of the TMDL calls for
			which will not be included in analysis of in dissolved	additional monitoring.
			metal concentrations over time. The statement that	
			metal concentrations decrease over time in Mugu	
			Lagoon is questioned in that there is no assessment of	
			parameters affecting concentration, such as changes in	
			load in wet vs. dry years, variability in sampling, time	
			and depth of sampling, etc. Statistical applications to	
			these data are needed prior to making such a statement.	
3.10			Page 23, last paragraph: Think reference is to	Comment noted. It is agreed that the observation is for
			concentrations of metals and selenium in Mugu Lagoon	decreasing concentrations for measurements closer to
			tend to decrease as water flows toward the mouth of the	the mouth of the Lagoon, most likely due to increased
			lagoon. This point is reiterated on page 81 as in Mugu	complexation of dissolved constituents as the water
			lagoon. This decreasing trend in concentration may be	becomes more 'sea like''.
			a result of mixing of Calleguas Creek waters with the	
			lagoon water, resulting in increased complexation and	

No.	Author	Date	Comment	Response
			precipitation, and reduced concentrations of the dissolved fraction of the metals, or reduced	
			measurement of the dissolved solids depending on the	
			sampling method used. Information on general water	
			quality parameters (e.g., salinity) might explain the	
			trend.	
3.11			Tables 10-21. It is unclear how the % Above Criteria	The % exceedance is the number of exceedances
			values are calculated. It is stated that only detected	divided by the total number of samples.
			values that exceed criteria are used in the calculation.	
			However, for Table 12, the text states that there were	
			12 exceedances of the total mercury criteria. If there	
			were 12 exceedances, then the % above the criteria is	
			27% not 22%. This is because only 82% of the 55	
			samples had detected values (i.e., 45 samples) and 12	
			of 45 samples is 27%. This is a minimum, in that of	
			the 10 samples with a non-detect, the number with a	
			detection limit above the numeric target is not	
			indicated. In Table 15, 4 samples were collected in	
			Reach 6 for selenium, and only 2 samples had detected	
			concentrations. However, the % Above Criteria is	
			shown as 25%; only options are 50% or 100% (1 or 2	
2.12			samples, respectively, not part of a sample).	
3.12			Tables 10-21. The range of hardness values in each	The 50th percentile hardness by reach has been used in
			reach should be provided for the chronic and acute	other TMDLs in the Region and was determined to be
			Ireshwater targets. Use of the 50 percentile for all	the most appropriate choice after analysis of the
			ary weather samples in a subwatershed is questioned as	nationess data. The variability of nationess values was
			1) some of the subwatersneds include several reaches	not considered significant enough to justify
			of considerable length and variability, 2) subwatersheds	bardness values. The values presented in the oursent
			moundwater DOTW affluent and tributory insute 2)	naruness values. The values presented in the current
			groundwater, POTW effluent, and tributary inputs, 3)	condition section are reflective of the chosen targets for

No.	Author	Date	Comment	Response
			water sources within a subwatershed change over time within the dry and wet weather periods. Use of one number for all calculations may incorrectly estimate the criteria used for a given reach of creek. In reaches where hardness values are highly variable as a function of source water, more applicable hardness values should be used.	the TMDL.
3.13			Reaches without hardness data include 1, 2, 4, 5, 6, 8, 11, 12, and 13. In reaches 1, 2, and 4, salinity resulted in the use of the saltwater continuous criterion. In reach 5, the freshwater continuous criterion for selenium was used. In reaches 6 and 8, hardness data were not provided, even though the median hardness value in reach 7 exceeded 400 mg/L, resulting in the highest criteria used within the watershed. For reaches that are not listed for metals (11, 12, and 13), hardness data were not provided, even though the reaches are contiguous with those impacted by metals downstream.	Hardness data are available for all reaches in the watershed except reach 11 which does not contain flow except during large wet weather events. For analysis, all reaches within a subwatershed were grouped together for analysis. For all of the reaches mentioned, the median dry weather hardness was over 400 mg/L. The selenium criteria are not impacted by hardness and the CTR requires the use of the lower of the freshwater or saltwater criteria when salinity is between 1 and 10 ppt more than 5% of the time.
3.14			At higher reaches, hardness concentrations increase, and as a result, the criteria used increase. Not considered is the impact on total hardness of the creek and its tributaries due to the use of hydrated lime and basic copper sulfate applied in the orchards and agricultural areas. If these compounds are affecting hardness as they are copper concentrations, then as the area develops and use of these chemicals drops, hardness may also decrease and the criteria will need to be adjusted accordingly.	Comment noted. The implementation component of the TMDL requires continued compliance monitoring. The TMDL can be re-opened and revised if required to address this issue.

No.	Author	Date	Comment	Response
			Figures 12 and 13 are incomplete, leaving out	Comment noted. The text explanation/discussion of the
			processes such as complexation, mercury methylation,	Figures does provide more detail.
			etc.	
3.15			Page 49: Discussion of biotic and abiotic reactions of	Staff agree and future monitoring is called for in the
			mercury is well done; the varying environmental	implementation of the TMDL.
			conditions, and reaction rates within the water column	
			support concerns of how data were collected, grouped,	
			and basically combined into one number for an entire	
			subwatershed. Mercury methylation rates are expected	
			to be greater deeper in the water column, in anoxic	
			water that is warm. Deposition areas along the creek,	
			and in Mugu Lagoon are potential hot spots for	
			mercury methylation. When few samples are collected	
			from depth, or are averaged with numerous surface	
			samples, the information is lost, resulting in an	
			underestimate of the formation of compounds that	
			future maniforming plans need to address these concerns	
			future monitoring plans need to address these concerns	
2.16			Tor all the constituents of concern.	As defined in the LICDE medal "menomious" muself is
3.10			rage of: The grouping of residential, commercial,	As defined in the HSPF model impervious function is
			industrial, and runoil from impervious areas is	all runoil that does not have the opportunity to initiate
			unfortunate. Given that Urban runoff contributes	a downshout to a drivoway running into a street, and
			20% of total copper, 28% of dissolved lickel, etc. it	finally a storm drain; runoff from a parking lot; or
			satagorias, asp. when determining practices to reduce	runoff from an industrial complex. In the model there
			metal loading. In addition, the omission of rooffons	are 28 variations of "impervious" applied across the
			from the impervious surfaces calculations assumes that	watershed and while the chemical constituent makeup
			the roofs are residential and ignores the commercial	of the runoff is similar from each variation the
			and industrial component of the category	chemical makeun is the integrated average quality from
			and moustiful component of the category.	all impervious sources from a specific area

No.	Author	Date	Comment	Response
3.17			Page 61: Tapo Canyon is described as undeveloped, however Table 3 indicates there is a gravel mine and nursery operations within the watershed. The use of one monitoring site in a lightly developed area as representative of all the undeveloped land is questioned.	Staff agree that Tapo Canyon contains some gravel and nursery operations. However, the majority of the drainage area is undeveloped. Because the Calleguas Creek tributaries in undeveloped areas typically do not contain flow during dry weather. Tapo Canyon is one of the few areas that drains a primarily undeveloped area that can be sampled during dry weather conditions. Although the limited development may have an impact on the results, Tapo Canyon monitoring is the best available source of dry weather, undeveloped land monitoring results in the watershed.
3.18			Page 72, last paragraph: Units for copper concentrations in domestic water are questioned.	Comment noted. Units will be corrected.
3.19			Page 75: Given the importance of Total Suspended Solids (TSS) values in determining mercury loading, the estimation of sediment erosion based on surface and rill/sheet erosion is a limitation of the study. In stream channel erosion would seem to be of great importance, given the hydrological characteristics of the area (intense rainfall in a short time period). Estimates of sediment load into streams from that surrounding land are made, but in-stream erosion is not addressed.	Both land surface erosion and in-stream sedimentation/resuspension are accounted for in the HSPF model. The information detailing the HSPF model implementation are discussed in the corresponding Appendices. The text in the TMDL document on page 75 describes a source loading estimate which was conducted separately from the HSPF modeling as a rough double check.
3.20			Page 97: Estimates of background concentrations of metals and mercury are critical to this process in that future practices will depend on realistic numbers. Use of data that contain variable detection limits, including some above detected or measured background concentrations is problematic. This is often the case with historical data. It is recommended that future	Staff agree. Several special studies may be performed to improve the understanding of background loadings. Evaluation and Initiation Sources Exclusion study will evaluate background loads for each constituents including mercury. The monitoring program and another special study to investigate concentrations by PSD and Agricultural Dischargers is also included in

No.	Author	Date	Comment	Response
			monitoring include background soils data, especially for mercury.	the implementation plan to identify areas with high concentrations of metals and/or selenium. Use of detailed soil maps for the watershed in combination with field survey and soil sampling may lead to identification of areas of important for reducing over all loads to the stream. The results of studies on background loadings of metals studies and will be submitted to the Regional Board 4 years after the effective date of the amendment.
3.21			Page 109: The summary/conclusion about the primary source of selenium being natural soil contradicts an earlier statement on the top of page 106, that states natural soil loadings represent less than 1% of the annual load of selenium.	Staff agree. The statement should state that the primary source of selenium is natural groundwater contributions. The text will be changed accordingly.
3.22			Page 110, paragraph 3: Numeric targets for copper and nickel are for dissolved concentrations, yet 99% and 97% of the load is in the particulate form. Transformation of the particulate to dissolved form is underestimated by modeling, as resuspension is not included in the model. This indicates that a large source of metal remains unaccounted for.	Comment noted. The reason for the effort in modeling both dissolved and total metals and selenium is that on an annual basis, almost the entire load is in the particulate form, because discrete storms (long-term historical average of 7.7 per year) produce flows in the watershed 3 to 5 orders of magnitude greater than the annual average. Including both total and dissolved metals provides a more precise analysis than annual total metal load alone. The HSPF does include sedimentation during periods of 'low flow'' and resuspension during periods of 'high flow''. In addition, the transfer to and from water column dissolved metal and benthic solids is accounted for in the model. To a large degree, the transfer from benthic sediments to the dissolved water column drives

No.	Author	Date	Comment	Response
				receiving water concentrations during dry weather. Because water column-benthic transfers of particulate and dissolved metals and selenium are included in the model, the metals are accounted for to the extent practical. Furthermore, because the transfer of dissolved constituent from the benthic sediment to the water column is considered, the stream bed acts as a source in the analysis. The above points will be
				addressed in the text for clarification.
3.23			Page 112: The estimated Kd for the copper, nickel, and selenium are questioned. Concerns are that the Kds are not applicable at low TSS conditions, only 30% to 40% of the variability in the equation used to calculate the Kd is related to the regression of [(Ct/Cd) -1] and TSS, meaning 60-70% of the variability in unexplained!. Comparison of these estimated values to other Kd values in the literature would be helpful.	Comment noted. It is agreed that the partitioning model does not account for a fair amount of variability in the portioning especially in the 10 to 100 mg/L TSS range. The linear partitioning model asymptotically calculates all metal present to be in the dissolved form as TSS decreases. It is the variability in local chemistry that binds more of the metals reducing the dissolved fraction that creates the variability. By using the regression we are biasing the results toward a higher dissolved metals and selenium fraction. A review of the literature will reveal that Kd for selenium are in the range of 1,000 to 10,000, and Kd for mercury are in the range of 10,000 to 100,000.
3.24			Page 114: Error associated with Equation 4 may be quite high, in that errors multiply, and already there are errors in the estimation of Kd, Ct (average over watershed) and TSS (method unknown: could be estimated using conductivity measurements). This compounding of errors should be addressed.	Equation 4 represents a simplified method of how HSPF calculates the relation between total and dissolved metals and corresponds to the USEPA translator guidance. The calculations are internal to the HSPF model. During the calibration process of HSPF the Kd was adjusted to result in the best dissolved concentrations given the model calculated TSS values.

No.	Author	Date	Comment	Response
				Equation 4 provides a method to translate the dissolved
				criteria for the metals and selenium to equivalent total
				criteria for each subwatershed for various watershed
				conditions using receiving water TSS as a lumped
				parameter indicating water column conditions. By
				multiplying Equation 4 by the receiving water flowrate
				and the appropriate conversion factor allows the
				calculation of a flow based allowable loading curve. In
				general, the model over predicts both total metals and
				selenium, and TSS while providing good estimates of
				the dissolved metals and selenium meaning the Kd are
				likely underestimated. Also, knowing that the Kd is
				estimated to be too small (i.e. indicating more in the
				dissolved phase) combined with the measured TSS will
				result in translating the dissolved criteria to a total
				criteria that is biased low. (i.e. more stringent than
				necessary to provide the intended protection to aquatic
				life). By making the assumptions we have made
				throughout the entire modeling process, allowable total
				metals and selenium loads calculated with Equation 4
2.25			Dage 114 Section 7.4. The bothtyph model is evenly	Will be conservative. The bethtub model was meant to be a servering level
3.23			simplicities it does not include tidel influence	model and as such was simplicitie. The goal in
			simplify the does not include that influence,	developing the model was to determine if particle
			considerations. It is unclear how a margin of safety is	developing the model was to determine it particle
			provided in that details of conditions used are not	would partition into the water column. As it turned out
			provided (e.g. was the 'bathtuh' full or not (low tide)	a numeric model is unnecessary to make that
			when the model was run). In Figures 42-47, the model	determination, because the Kd calculated with
			seems to underestimate the water column data and over	concurrent dissolved metals and selenium total metals
			estimate the sediment data. This poses a challenge to	and selenium, and TSS measurements indicate that

No.	Author	Date	Comment	Response
			the conclusion that there is not a correlation between high metal concentrations in the water column and concentrations in the sediments. Data are limited in time and space, and additional sampling should be included in future monitoring.	partitioning to particles (i.e. Kd) in the Lagoon is almost an order of magnitude greater than partitioning in the waterbodies within the watershed. Additional sampling is included in the implementation of the TMDL and a revisiting of the analysis.
3.26			Page 122, paragraph 3: Comparison of Kd values to those from other sites and location would strengthen the report, again since the Kd is estimated using estimated data.	Actual data to perform the Kd analysis were only available for three of the reaches in the watershed and Mugu Lagoon. The analysis was performed for each of the reaches with available data and the resulting Kd ranged from 23,800 to 48,100 L/Kg, which on a log scale plot in a tight group. A fundamental point is that all the Kd for each metal were calculated using measured paired total and dissolved metal, concurrent with TSS. The data used to calculate Kd were not estimated. The Kd were estimated using measured site- specific concurrent data.
3.27			Page 123: Figure 48 is a model of mercury not copper (figure caption).	Revised per comment.
3.28			Page 125, Table 60: It is unclear how the % reduction values were calculated.	The percent reduction should have been 42% and 45% for the mean and median, respectively. Corresponding values in Table 60 have been updated. All references to the tissue percent reduction elsewhere in the document need to be updated. Ultimately this does not impact the TMDL because the number of tissue samples is insufficient in size to override the 80% reduction necessary for water concentrations.
3.29			Page 128: Reasons for setting the % reduction of mercury in sediments at 80% are not sufficient. The CTR WQO should be considered temporary as more	As with the other metals, the approach in determining the TMDL is to set a target based on the information at hand and implement a strong monitoring program with

No.	Author	Date	Comment	Response
			fish tissue data are collected. While the limited data set is recognized, having few data or no data is not justification for setting the reduction to meet the WTO, especially for mercury, which can biomagnify. Note that use of a watershed wide tissue data set results in a loss of reach specific tissue values. This prevents identification of areas to target actions at.	provisions to revisit the TMDL in the future when more data are available. The only tissue samples exceeding the target were sharks (TL4) in the Lagoon. A weight of evidence approach is used in that the required reduction off the land necessary to meet CTR objectives happened to correspond to the linear reduction necessary to bring TL4 fish in Mugu Lagoon to the tissue target. It is difficult to envision setting a target different from the adopted CTR objective without site specific data, especially in light of 1) low tissue mercury residual levels (i.e. 8 of 45 TL4 samples in the watershed exceeded the tissue target), and 2) the implementation plan calls for additional monitoring and future updates to the targets. Reason 1 states that none of the tissue samples collected across the entire watershed (outside of Mugu Lagoon) exceeded the mercury tissue targets. The reach information was not stripped from the mercury tissue data, and reach specific implementation strategies have not been removed from consideration.
3.30			Page 130: Top. It is amazing to read that dissolved oxygen (DO) data are not available for a slough or lagoon such as Mugu lagoon. Of course DO is controllable; huge drinking water reservoirs use hypolimnetic aeration, surface aerators, etc. for preventing anoxia at sediments.	Comment noted. The monitoring plan will include DO for Mugu Lagoon. The urban water management plan required by the TMDL will address aeration issue in Mugu Lagoon.
3.31			Page 134, Equation 8: Use of the translator to convert dissolved to recoverable loads is of concern in that it assumes pH, complexation potential, salinity etc are constant throughout the watershed. TSS only explains	Comment noted. The partition coefficient for each metal was calculated independently for each of the major subwatersheds (Mugu Lagoon, Revolon, Calleguas, Conejo, and Arroyo Las Posas/Arroyo

No.	Author	Date	Comment	Response
			a part of the relationship.	Simi). The specific water chemistry was not considered in the translator, however the effects are encompassed in the results by using the lumped parameter KD and TSS.
Public R	leview			
4.1	Camrosa Water District	5/16/06	1. Copper Water Effect Ratio In conjunction with the development of the Metals and Selenium TMDL, the stakeholders in the Calleguas Creek Watershed developed and submitted a copper water effects ratio (WER) for lower Calleguas Creek and Mugu Lagoon to the RWQCB for consideration. The copper WER was developed as part of the watershed's overall implementation strategy to address copper in the Calleguas Creek Watershed. The stakeholders feel that incorporation of the copper WER into the Tentative Metals BPA is an important component of the strategy to effectively address copper discharges in the watershed and will allow effective implementation of best management practices and other implementation measures to address all of the 23 constituents for which TMDLs have been developed in the watershed.	Comment noted. The Copper WER is not under consideration by the Regional Board at this time. New findings (No. 11-15) were added to the revised Tentative Resolution to clarify the status of the Copper WER. The CCWMP has submitted an updated report that is under review by Regional Board staff. It is anticipated that staff will bring the WER before the Regional Board for their consideration.
			Since September 2005 when the Copper WER was submitted to the Regional Board, the stakeholders have been working with Regional Board staff to determine the most appropriate WERs based on the results of the study. At the request of the Regional Board staff, an additional wet weather sample was collected and the	Regional Board staff agree. Finding No. 13 is added to clarify that the Regional Board had reviewed the draft report and a comment letter was sent to LWA on March 15, 2006. Regional Board staff identified several concerns and data limitations of the study that constrained the scientifically defensible alternatives

No.	Author	Date	Comment	Response
			WERs currently being discussed are more conservative than those proposed by the stakeholders in September. The stakeholders have actively participated in responding to the concerns of the Regional Board staff on the copper WER.	available to the Board. The finding also note that Larry Walker Associates had sampled an additional wet weather event on April 14, 2006 in response to Regional Board comments
			As such we requesting the Tentative Metals BPA provide for incorporation of a copper WER upon its approval through the following modifications. In each of the footnote revisions, estimated values of the WER have been developed based on the current discussions with the Regional Board staff.	
4.2			 Modify footnote 1 in the Copper Targets table to state as follows: The WER has a numeric value of 1.0 unless a study is completed and approved to adjust the numeric value of the WER. A WER study for Mugu Lagoon, lower Calleguas Creek and Revolon Slough has been submitted to the Regional Board and is currently under review by Regional Board and USEPA staff. The WER study contains proposed WERs of 1.5 for Mugu Lagoon and Revolon Slough and 3.4 for Calleguas Creek that were developed in consultation with RWQCB staff. If a WER or SSO for copper is approved, the targets shall be set in accordance with the approved WER or SSO using the equations in the table above. 	Comment noted. The footnote 1 in the Copper Target Table is revised as follows to clarify that if site-specific WERs are approved by the Regional Board, the TMDL targets and allocations shall be implemented in accordance with the approved WERs: "The water quality targets for copper in the TMDL are expressed as the copper water quality criteria from the federal California Toxics Rule (CTR). Those criteria include a numerical threshold multiplied by a water- effect ratio (WER). The WER has a default value of 1.0 unless a site-specific WER is approved. To use a WER other than the default of 1.0, a study must be conducted consistent with USEPA's WER guidance and adopted by the Regional Board through the state's basin plan amendment process. A WER study for Mugu Lagoon (Reach 1), lower Calleguas Creek (Reach 2), Revolon Slough (Reach 4) and Beardsley

No.	Author	Date			С	ommen	t		Response	
										Wash (Reach 5) has been submitted to the Regional
										Board. If the Regional Board approves site-specific
										WERs for copper in these waterbodies, the TMDL
										targets will be modified in accordance with all legal
										and regulatory requirements and implemented in
										accordance with the approved WERs using the
										equations set forth in Table 7-19.1 above"
4.3			Modify t	he POT	W Total	Recove	rable Co	opper V	/LAs	Staff agree. See revised BPA
			table to i	nclude t	he WEF	R [CCW	MP prop	bosed]a	s shown	
			below:			_		_		
				Int	orim	1	Einal ^(e)			
				Doily	Monthly	Daily	Monthly			
			POTW	Maximum	Average	Maximum ^(f)	Average ^(f)	lb/day		
				(ug/L)	(ug/L)	(ug/L)	(ug/L)		_	
			Hill Canyon WWTP	20.0	16.0	(a)	(a)	0.11*WE 0.04	K -	
			Simi Valley WQCP	(b)	(b)	31.0	30.5	(c)		
			Moorpark WTP	(b)	(b)	31.0	30.5	(d)		
			Camarillo WRP	57.0	20.0	(a)	(a)	0.12*WE 0.04	R -	
			Camrosa WRP	(b)	(b)	27.4	27.0	(d)		
4.4			Modify t	he Urba	n Runof	ff Total	Recover	able Dr	y	Staff agree. See revised BPA
			Weather	WLAs i	n Water	r Colum	n table t	o incluo	le the	
		WER [CCWMP proposed]as shown below:								
				1			1			
	Elow Pange Calleguas and Conejo Creek						Re	evolon Slou	gh Elovatod	
				Low Flow	Flow	Flow	Low Flow	Flow	Flow	
			Copper ^(b)	0.04*WER - 0.02	0.12*WER -	0.18*WER -	0.03*WER - 0.01	0.06*WER -	0.13*WER -	
			Nickel	0.100	0.120	0.440	0.050	0.069	0.116	
	1		Selenium	(a)	(a)	(a)	0.004	0.003	0.004	

No.	Author	Date				Comme	ent			Response
4.5			Mod	ify the U	rban Rur	off Tota	l Recove	rable W	et	Staff agree. See revised BPA
			Wear	ther WLA	As in Wa	ter Colu	mn table	to inclue	de the	
			WEF	RICCWN	AP prope	sedlas s	hown bel	ow:		
			Const	ituent	Callegua	s Creek		Revolon Slo	ough	
			Copper	(c) (0.0005	4*Q^2*0.032*C	Q - 0.17)*WER	- 0.06 (0.0002	2*Q ² +0.0005*C	Q)*WER	
			Nickel	^{b)} 0.014*C	2^2+0.82*Q		0.027*0	Q^2+0.47*Q		
			Seleniu	(a)			[1.50 Q			
4.6			Mod	ify the M	odify the	e Other N	NPDES D	Discharge	ers	Staff agree. See revised BPA
			WLA	As table to	o include	the WE	RICCW	MP prop	osedl	
			as sh	own belo	W.			FF	1	
			u 5 511							
				Сор	per ^(c)	Ni	ickel	Sele	nium	
			Reach	Final Dry CCC (ug/L)	Final Wet CMC (ug/L)	Final Dry CCC (ug/L)	Final Wet CMC (ug/L)	Final Dry CCC (ug/L)	Final Wet CMC (ug/L)	
			1	3.1*WER	4.8*WER	8.2	74	(b)	(b)	
			3	25.9	4.8°WER 26.3	8.2	856	(b) (b)	(b) (b)	
			4	3.1*WER	4.8*WER	8.2	74	5	290	
			6	(a)	29.8	(a)	958	(b)	(b)	
			7 8	(a) (a)	29.8 29.8	(a) (a)	958 958	(b) (b)	(b) (b)	
			9	27.9	41.6	160	1292	(b)	(b)	
			11	27.9	41.6	160	1292	(b) (b)	(b) (b)	
			12	27.9 27.9	41.6 41.6	160 160	1292 1292	(b)	(b)	
				27.0	41.0	100	1202	(8)	(5)	
4.7			Mod	ify footn	ote * in t	he Copp	er allocat	ions tab	les for	Comment noted. The footnote * in the Copper
			POT	Ws, Urba	an Runof	f, and O	ther NPD	ES Disc	chargers	allocations tables for POTWs, Urban Runoff, and Other
			to sta	ate as foll	ows:				-	NPDES Dischargers is revised as follow to clarify that
										if site-specific WERs are approved by the Regional
			The	WER has	a numer	ric value	of 1.0 ur	nless a st	udy is	Board, the TMDL wasteload allocations shall be
			com	pleted and	d approv	ed to adj	ust the n	umeric v	alue of	implemented in accordance with the approved WERs:
			the V	VER. A	WER stu	dy for M	lugu Lag	oon, lov	ver	
			Calle	eguas Cre	ek and R	Revolon S	Slough h	as been		'If site-specific WERs are approved by the Regional
			subn	nitted to t	he Regio	nal Boa	rd and is	currently	y under	Board, TMDL waste load allocations shall be

No.	Author	Date	Comment								Response
			review	by Regio	nal Bo	oard and	d USEF	PA sta	aff. Th	ie	implemented in accordance with the approved WERs
			WER st	tudy cont	ains p	roposed	d WER	s of 1	.5 for l	Mugu	using the equations set forth above. Regardless of the
			Lagoon	and Rev	olon S	Slough a	and 3.4	for C	Callegu	as	final WERs, total copper loading shall not exceed
			Creek t	hat were	develo	oped in	consult	tation	with		current loading. In addition, effluent concentrations
			RWQC	B staff. I	faW	ER or S	SSO foi	r copp	per is		shall not exceed the performance standards of current
			approve	ed, the W	LAs s	hall be	set in a	ccord	lance v	with the	treatment technologies"
			approve	ed WER of	or SSC) using	the equ	ation	is in th	e table	
			above.								
4.8			Modify	the Total	Reco	overable	e Dry W	Veath	er LAs	in	Staff agree. See revised BPA
			Water C	Column ta	able to	o includ	le the W	/ER [CCWN	MP	
			propose	ed] as sho	wn be	elow:					
					С	allequas Cr	reek	F	Revolon Slo	ouah	
			Con	stituent	Low	Average	Elevated	Low	Average	Elevated	
				Agriculture	Flow 0.040	0.040	0 170	Flow 0.043	Flow 0.070	0.280	
			Copper*	Open Space	0.150	0.080	0.130	0.050	0.120	0.110	
			Nickel	Agriculture	0.420	0.260	0.970	0.390	0.690	1.600	
			Selenium	Agriculture	(a)	(a)	(a)	0.010	0.020	0.018	
4.0			M - 116-	Open Space	(a)	(a)	(a)	0.180	0.310	0.490	Staff annual Car marine I DDA
4.9			Wooth	the Urba	n Kun	IOII IOI	tal Reco	overa	ble we	et la c	Stan agree. See revised BPA
			weathe	COWMD	in wa	ter Coll			inciua	le the	
			WER [CCWMP proposed] as shown below								
			Constituent			Calleguas C	reek	F	Revolon Sl	ough	
			Copper ^(c)	Agriculture	(0.00017 0.05)*WE	'*Q^2*0.01*0 ER - 0.02	Q -	(0.00123	3*Q^2+0.00	34*Q)*WER	
				Open Space	0.000053	37*Q^2+0.00)321*Q	0.00004	32*Q^2+0.0	000765*Q	
			Nickel ^(b)	Open Space	0.014°Q' 0.014*Q'	^2+0.82*Q		0.027*Q 0.027*Q	^2+0.47*Q		
			Selenium (^A griculture (a) 1.56*Q Open Space (a) 1.56*Q					1.56*Q 1.56*Q			
4.10			Modify	footnote	* in tl	he Cop	per allo	catio	ns tabl	es for	Comment noted. The footnote * in the Copper
			Agricul	tural Dise	charge	ers to st	ate as f	ollow	vs:		allocations tables for Agricultural Dischargers is
				Site and a state and a state as to the state of the state							revised as follow to clarify that if site-specific WERs

No.	Author	Date	Comment	Response
			The WER has a numeric value of 1.0 unless a study is completed and approved to adjust the numeric value of the WER. A WER study for Mugu Lagoon, lower Calleguas Creek and Revolon Slough has been submitted to the Regional Board and is currently under review by Regional Board and USEPA staff. The WER study contains proposed WERs of 1.5 for Mugu Lagoon and Revolon Slough and 3.7 for Calleguas Creek that were developed in consultation with RWQCB staff. If a WER or SSO for copper is approved, the LAs shall be set in accordance with the approved WER or SSO using the equations in the table	are approved by the Regional Board, the TMDL load allocations shall be implemented in accordance with the approved WERs: "If site-specific WERs are approved by the Regional Board, TMDL load allocations shall be implemented in accordance with the approved WERs using the equations set forth above"
4.11			above In addition, we request that the Board Resolution adopting the Basin Plan Amendment (BPA) include a commitment by the Regional Board to consider the copper WER within four months of the Regional Board adoption of the BPA.	Comment noted. Task No. 22 is added to the Implementation Table to state that Regional Boardd staff will prepare water effect ratios for copper based on study performed by stakeholders for Regional Board consideration four months after the adoption of this proposed BPA.
4.12			2. Problem Statement It would be helpful to revise the problem statement to include the reaches listed for each metal. This would clarify which allocations apply to which reaches when reader get to allocations.	Note take. Please refer to the Technical Report document for details.
4.13			 3. Numeric Targets Add footnote to Table 1. Copper Targets, Table 3. Nickel Targets, and Table 5. Zinc Targets for the Sediment Targets as follows: 	Comment noted

No.	Author	Date	Comment	Response
			Attainment of sediment quality targets will be evaluated in combination with sediment toxicity data, if available.	
			Rationale: the statement above is included in the paragraph above the targets and the point gets lost by the time the reader gets to Table 5. It would be clearer if placed in a footnote at the bottom of each table that contains a sediment target and could be removed from the paragraph above the tables	
4.14			4. Wasteload AllocationRevise the introductory paragraph to read as follows:	Staff agree. See revised BPA
			In the case of copper, nickel, and selenium, waste load allocations (WLAs) are developed for both wet and dry-weather. The dry-weather WLAs apply to days when flows in the stream are less than 86 th percentile flow rate for each reach. The wet-weather WLAs apply to days when flows in the stream exceed 86 th percentile flow rate for each reach. Annual mass loads of mercury in suspended sediment were developed according to low, medium, and high annual flow categories. A margin of safety of 15% was included in the WLAs for copper and nickel.	
			Move the discussion about zinc allocations from the POTW section to the introductory section for the wasteload allocations.	

No.	Author	Date	Comment	Response
			Rationale: The changes make the introduction consistent with the load allocation section, distinguishes between the allocation process for copper, nickel and selenium, versus mercury, and addresses the fact that the zinc allocation discussion applies to all of the waste load allocations, not just POTWs.	
4.15			 4.1 Revisions to POTW Wasteload Allocations Move the discussion about zinc allocations to the introductory section (see comment above). Move the discussion about margin of safety to the introductory section (see comment above). Delete the last three sentences that discuss the WER. Rationale: The language discussing the WER is not consistent with the recommended revised footnotes (discussed above) and is not necessary with the changes requested in the first comment. 	Staff agree. See revised BPA
4.16			Add Total Recoverable to the copper, nickel and selenium allocation table titles for clarity.Revise the concentration-based allocations in the table to copper and nickel allocations table to total recoverable concentrations by dividing by the CTR conversion factor. Add a footnote describing how the allocations were converted.	Staff agree. See revised BPA

No.	Author	Date	Comment	Response
			Rationale: The copper and nickel concentration-based allocations currently included in the allocations tables for POTWs are equal to the dissolved criteria. The allocations should be converted to total recoverable values by using the default CTR conversion factors.	
4.17			Revise the headers in the allocation tables from CMC to Daily Maximum and from CCC to Monthly Average.	Staff agree. See revised BPA
			Rationale: CMC and CCC are acronyms for criteria and are not appropriate for describing allocations.	
4.18			 4.2 Revisions to Urban Stormwater Co-Permittees Wasteload Allocations Add the following paragraph to the Urban Runoff section before the allocation tables Mass-based WLAs are established for copper, nickel, and selenium in total recoverable forms. Mass-based WLAs are developed for mercury in suspended sediment. Interim limits are included to allow time for dischargers to put in place implementation measures necessary to achieve final waste load allocations. The daily maximum and monthly average interim limits are set equal to the 99th and 95th percentile of available discharge data. 	Revised per comment.
			Rationale: This language makes the urban runoff	

No.	Author	Date	Comment	Response
			section consistent with the POTW section in describing	
			how interim and final allocations were developed.	
4.19			Revise the headers in the allocation tables from CMC	Revised per comment
			to Daily Maximum and from CCC to Monthly	
			Average.	
			Add Total Recoverable to the copper, nickel and	
			selenium allocation table titles for clarity.	
			Revise the wet weather selenium allocations for	
			Revolon Slough in the Wet-Weather WLAs in Water	
			Column table to be 1.56*Q.	
			Rationale: The wet weather selenium allocations	
			included in the Tentative Metals BPA and Tentative	
			Metals Technical Report are incorrect. They appear to	
			be copies of the wet weather nickel allocations.	
4.20			Add the following footnote to nickel and selenium in	Revised per comment
			the Wet-Weather WLAs in Water Column table:	
			(a) Current loads do not exceed loading capacity	
			during wet weather. Sum of all loads cannot	
			exceed loads presented in the table	
			Rationale: This footnote was included in the Metals	
			Technical Report and was designed to show that the	
			current loads are not being exceeded and cap those	
			loads as a sum of all discharges. Without the footnote,	
			the allocation for urban runoff appears to be the entire	
			allowable load, as does the agricultural allocations.	

No.	Author	Date	Comment	Response
4.21			4.3 Revisions to Other NPDES Dischargers Wasteload Allocations	Comment noted. Concentration-based wasteload allocations in the table to copper and nickel allocations table are converted to total recoverable concentrations
			Add Total Recoverable to the copper, nickel, and selenium allocation table titles for clarity	using CTR conversion factor to be consistent with other wasteload allocations. See revised BPA.
			Revise the title of the Wasteload allocations table to state 'Final WLAs for <u>Dissolved</u> Copper and Nickel and <u>Total Recoverable</u> Selenium' for clarity.	
			Rationale: Unless the values for copper and nickel in	
			the allocations table are converted to total recoverable	
			allocations using the default CTR conversion factor,	
			the allocations as presented are dissolved.	
4.22			5. Load Allocations Revise the introductory paragraph to read as follows:	Revised per comment
			Mass-based load allocations (LAs) for agriculture, background, and open space are developed for copper, nickel, and selenium in total recoverable forms. LAs for copper, nickel and selenium are developed for both wet and dry-weather. The dry- weather LAs apply to days when flows in the stream are less than 86 th percentile flow rate for each reach. The wet-weather LAs apply to days when flows in the stream exceed 86 th percentile flow rate for each reach. Annual mass loads of mercury in suspended sediment were developed according to low, medium, and high annual flow categories. A margin of safety of 15% was included	

No.	Author	Date	Comment	Response
			in the LAs for copper and nickel.	
			introductory section.	
			Add the following language before the Interim limits table.	
			Interim limits are included to allow time for dischargers to put in place implementation measures necessary to achieve final load allocations. The daily maximum and monthly average interim limits are set equal to the 99 th and 95 th percentile of available discharge data.	
			Rationale: Revisions to make the load allocations section consistent with the wasteload allocations section.	
4.23			Revise the headers in the allocation tables from CMC to Daily Maximum and from CCC to Monthly Average.	Revised per comment
			Add Total Recoverable to the copper, nickel and selenium allocation table titles for clarity.	
			Revise the wet weather selenium allocations for Revolon Slough in the Wet-Weather LAs in Water Column table to be 1.56*Q for both open space and agriculture.	

No.	Author	Date	Comment	Response
			Add the following footnote to nickel and selenium in the Wet-Weather WLAs in Water Column table:	
			(b) Current loads do not exceed loading capacity during wet weather. Sum of all loads cannot exceed loads presented in the table	
			Rationale: See above.	
4.24			6. Special Studies and Monitoring Plan	Comment noted. See revised BPA. Proposed language included. However, Regional Board staff note that the
			For Special Study #1, revise the fourth sentence as follows:	provisions for natural source exclusion in the Basin Plan pertain to bacteria.
			This study will also consider whether or not any portion of the ambient source contribution for agricultural or urban runoff loads qualify for natural source exclusion and/or provide the basic for site specific objectives.	
			Rationale: the study is designed to look at both background sources and ambient sources discharging from agricultural or urban runoff, not just the ambient sources from agricultural and urban runoff. Therefore, the word specially should be removed.	
4.25			7. Implementation Plan	Revised per comment
			Modify the Completion Date for Items 13b, 14b, and 15b in Table 7-19.2 to be based on EO approval of the workplans for the studies.	

No.	Author	Date	Comment	Response
			Rationale: Investment in studies needs to be based on	
			approved study workplans. Timeframes for completion	
			of studies should be linked to approval of the	
			workplans so that the studies are not compromised by	
			shortened timeframes caused by delays in approval of	
			the workplans.	
4.26			Modify the Completion Date for Item 21 in Table 7-	Revised per comment
			19.2 from 2 years to 1 year after the effective date of	
			the amendment.	
			Rationale: Urban and Agricultural dischargers are	
			required to submit management plans within two years	
			of effective date of the amendment. In order to	
			effectively develop the plans, the nickel SSO needs to be	
			considered by the Regional Board prior to that date	
4.27			8. Conclusion	Comment noted
			In summary we appreciate the support that the	
			Regional Board has given to the collaborative process	
			and believe that the documents produced through that	
			process are of high quality. We request that the	
			Regional Board move forward as quickly as possible	
			with the adoption of the Copper WER. We look	
			forward to continuing to work with you on the	
			upcoming TMDLs.	
5.1	Heal The Bay	5/16/06	On behalf of Heal the Bay, we submit the following	Comment noted. Response to specific comments are
			comments on the Draft TMDL for Metals and Selenium	provided below under responses to item 5.2-5.22
			in the Calleguas Creek, its Tributaries and Mugu	
			Lagoon ('Draft TMDL''). We appreciate the	
			opportunity to provide comments on the Draft TMDL.	

No.	Author	Date	Comment	Response
			the TMDL fails to address the fact that Ocean Plan	
			standards for the ASBS must be met in setting	
			targets for Calleguas Creek and Mugu Lagoon	
			For all of these reasons, it is entirely unclear, and	
			indeed unlikely, that this TMDL will ever restore	
			beneficial uses to these waterbodies. We urge the Los	
			Angeles Regional Water Quality Control Board	
			('Regional Board') to address these general	
			deficiencies by 1) obtaining sufficient water quality	
			data to calibrate and validate the model; 2) considering	
			concentration-based load allocations for non-point and	
			urban runoff; 3)ensuring that Ocean Plan ASBS	
			standards are fully considered and met; 4) adding an	
			explicit margin of safety to the numeric targets; and 5)	
			explicitly requiring ultimate compliance with TMDL	
			targets in the Implementation Plan	
5.2			1. Calleguas Creek Watershed Metals and	Regional Board staff understands that there are two
			Selenium TMDL Draft Final Technical Report	basic concerns – first the transparency of the process,
			("Technical Report")	and the appropriateness of a technical report produced
				by a stakeholder group's consultant.
			A. The Regional Board should clarify the role of	
			the Technical Report.	The Calleguas Creek Metals and Selenium TMDL is
			First the Durft Develotion for the Durft TMDI	the product of a stakeholder-led process in which
			First, the Draft Resolution for the Draft IMDL	Regional Board and US EPA staff had intensive
			(Resolution) describes the Technical Report as	Collegence Creek Watershed Management Plan is an
			though it is a Regional Board Document: [t]he	Calleguas Creek watershed Management Plan, is an
			Associates is an integral part of this Decional Board	established watershed planning group that has broad
			Associates is an integral part of this Regional Board	participation from focal groups, including water
			Board as a supporting technical analysis before acting "	purveyors, praining and resources agencies, publicly
			Board as a supporting technical analysis before acting."	owned treatment works, the Point Mugu Naval base,

No.	Author	Date	Comment	Response
			Resolution at 3. However, this statement directly	and agriculture representatives. The Calleguas Creek
			contradicts statements made by Regional Board staff,	Watershed Management Plan is an open group, inviting
			who have indicated in conversations that they are not in	participation from any and all interested parties. In the
			complete agreement with various aspects of the	past, environmental groups such as Ventura County
			Technical Report. In addition, as it was prepared by the	Coastkeeper and Heal the Bay have participated in
			parties' consultant, staff indicated that the Regional	CCWMP meetings.
			Board is not at liberty to make any changes to the	
			Technical Report. Clearly, this is not a Regional Board	The CCWMP has had standing monthly meetings for
			document. Despite this, and Regional Board staff's	nearly seven years and notices those meetings through
			admitted disagreement with certain elements of the	an email list that includes Heal the Bay and other
			Technical Report, the Resolution also states that, "[t]he	environmental groups. In addition, there has been
			technical document provides the detailed factual basis	outreach through public notices of a meeting in
			and analysis supporting the problem statement, numeric	February 2004 outlining the TMDL and the various
			targets (interpretation of the narrative and numeric	alternatives and issues. Additionally, the stakeholder's
			water quality objectives, used to calculate the	consultant met with Regional Board and US EPA on a
			pollutant allocations), source analysis, linkage analysis,	monthly basis to discuss the TMDL as it was being
			waste load allocations (for point sources), load	developed. These meetings were also noticed and Heal
			allocations (for nonpoint sources), margin of safety,	the Bay was invited to attend every meeting between
			and seasonal variations and critical conditions of this	the CCWMP and Regional Board and USEPA staff. In
			TMDL." Resolution at 3. These statements in the	the past years, there were more than 20 meetings
			Resolution should be removed. Further, the Technical	regarding the TMDL and status of the TMDL. Heal the
			Report is the only document available for public review	Bay had been invited and Heal the Bay had attended
			- there is no Staff Report associated with the Draft	twice.
			TMDL. Thus, there is no document that accurately	
			describes the analysis and assumptions made by	As described above, the TMDL was produced through
			Regional Board staff in developing the Draft TMDL. Is	a process in which Regional Board and USEPA staff
			it the Regional Board's intent to use the Technical	reviewed and commented extensively on draft sections
			Report in place of a staff report, even though staff does	of the IMDL. These discussions were documented by
			not agree with certain aspects of the Technical Report?	the CCWMP facilitator and notes and minutes were
			If so, the Regional Board must at the very least make	distributed and made available to the stakeholders. At

No.	Author	Date	Comment	Response
			this fact clear in the Resolution and explicitly outline	the request of the Ventura County Coastkeeper, the
			the portions of the Technical Report with which they	UCLA Institute of the Environment performed a review
			are not in agreement, as well as any separate analyses	of the CCWMP process. It found that CCWMP was
			done by Regional Board staff.	open process.
5.3			B. The Regional Board should develop and include	Regional Board staff understands HTB's concern that
			a staff report for public review.	the process of using a Technical Report produced by a
			Second, it is inappropriate for the Regional Board to	stakeholder group may obscure the role of the Regional
			issue the Draft TMDL, which is based on various	Board staff's analysis in the TMDL. In response to this
			complex calculations, models and analyses, without	comment, Staff have produced a report detailing its
			preparing a Staff Report that accurately presents the	rationale for accepting the analysis provided in the
			staff's reasoning and decision-making process. This is	Technical Report.
			important both for public review and for the Regional	
			Board members themselves to fully understand staff's	Regional Board staff surmises that there is some
			bases for the TMDL targets and load allocations. This	misunderstanding on the nature and extent of the
			Staff	Regional Board staff disagreement with the Technical
			Report cannot properly be replaced by a technical	Report. In fact, during the development of the TMDL,
			report produced by a stakeholder group's consultant,	there was one issue regarding numeric targets that staff
			particularly where, as here, Regional Board staff does	and the stakeholder consultant disagreed: the issue of
			not agree with all of the analyses and conclusions of	sediment targets for metals. Although the 303 (d)
			that technical report. As it stands now, it is	listings did not specifically list sediment impairments,
			impossible for the public to provide comprehensive	Regional Board staff opined that these targets were
			technical comments on the Draft TMDL without	essential for the attainment of water quality standards
			knowing the actual assumptions and analyses, if any,	because metals impairments of water quality standards
			used by staff in developing the final Draft TMDL. This	are typically caused by metals loaded to waterbodies
			simply does not meet the requirements for a transparent	with sediment. Sediment control is a major portion of
			process.	the TMDL implementation approach. Regional Board
			As the consultant's Technical Report was the only	staff proposed using NOAA guidelines which was
			document provided for public comment, our comments	eventually agreed to by stakeholders and the
			necessarily are based on the analyses and calculations	stakeholder consultant.

No.	Author	Date	Comment	Response
			set forth in that report, which presumably was used in	
			setting the TMDL numeric targets and	
			allocations	
5.4			II. The Numeric Targets In The Draft TMDL Many	The chronic criteria were calculated using the 50 th
			Not Ensure That WQS Will Be Attained.	percentile hardness values because the chronic criteria
			A. It is more appropriate and protective to use	are based on long term exposures. This is consistent
			the lowest hardness data point in calculating	with SIP method for choosing translator values and
			numeric targets for metals.	recent adopted metals TMDLs such as Los Angeles
			In the Draft TMDL, freshwater targets are calculated	River Metals TMDL and Ballona Creek and Estuary
			using the 50th percentile hardness calculated from all	Metals TMDL. In addition, Regional Board staff had
			freshwater hardness data collected in a specific	reviewed the hardness data for dry weather and found
			subwatershed. Technical Report at 38. This is a non-	that the 10% (ranging from 213 to above 400) hardness
			conservative assumption, as it allows that about	values are not significantly lower than the 50%
			half-of-the-time higher levels of pollutant will be	(ranging from 357 to above 400) and would not lead to
			bioavailable in the waterbody than accounted for in the	acute toxicity to aquatic organisms at time of lower
			target. As hardness varies inversely with bioavailability	hardness.
			for these pollutants, such a non-conservative	
			assumption cannot guarantee to protect beneficial	
			uses. The consequences of this decision are waters that	
			contain levels of metals that are toxic to aquatic life.	
			We therefore urge the Regional Board to use the lowest	
			nardness data point from each subwatershed instead, in	
			order to account for the entire range of	
			biographic	
5.5			B The TMDL terrete must ensure that Occor	
5.5			B. The TWDL targets must ensure that Ocean Dian standards for Mugu Lagoon, on Area of	
			Special Biological Significance are met	
			As acknowledged in the Technical Report Mugu	ASRS apply to the ocean only therefore Ocean Plan
			Lagoon is designated as an Area of Special Biological	requirements do not be applied to Mugu Lagoon

No.	Author	Date	Comment	Response
			Significance (ASBS). Technical Report at 10. Yet	
			having stated this, it is ignored throughout the rest of	
			the Report and in the Draft TMDL. The California	
			Ocean Plan sets forth specific standards for areas	
			designated as ASBS. Specifically, the Ocean Plan	
			states that:	
			[w]aste shall not be discharged to areas designated	
			as being of special biological significance.	
			Discharges shall be located a sufficient distance	
			from such designated areas to assure maintenance	
			of natural water quality conditions in these areas.	
			Ocean Plan at 20. Pursuant to this provision, the Draft	
			TMDL should not permit any direct discharges of	
			waste to Mugu Lagoon. The Draft TMDL should also	
			ensure that indirect discharges of waste into Calleguas	
			Creek are appropriately addressed so as to	
			ensure that natural water quality conditions are	
			maintained in Mugu Lagoon.	
5.6			There is no analysis provided in the Technical Report	Staff disagree. Regional Board staff acknowledge that
			to indicate that the calculated numeric targets and	the water column targets might not be achieved by
			WLAs will prevent exceedances of natural background	solely controlling agriculture, urban runoff, or POTW
			levels in Mugu Lagoon. Indeed, there is no discussion	discharges. However, percent reductions are applied to
			as to whether this applicable WQS was even	POTWs, agricultural, and urban runoff discharges to
			considered. The Draft TMDL must be modified as	meet the final WLAs and LAs to attain WQO in Mugu
			necessary to ensure that natural background levels are	Lagoon. The allocation are developed by taking off the
			attained and maintained in Mugu Lagoon pursuant to	background load from the loading capacity and
			the plain language of the Ocean Plan provisions. These	including MOS to the percentage of the load attribute
			Ocean Plan provisions are legally applicable WQS and	from POTWs, agricultural, and urban runoff
			cannot be simply ignored in developing TMDLs in	discharges. Further more, in developing the
			California.	allocations, the model assumed that background loads

No.	Author	Date	Comment	Response
				would not change significantly over time. In realty, some activities under taken to reduce loadings for this TMDL and other TMDLs will result reduction in background load from open space and groundwater. This results in higher reduction for the other sources than would be required. In addition, saltwater targets which are stringent than freshwater targets, are used to calculate the allocation for upstream discharges to achieve the WOOs in Mugu Lagoon
5.7			 C. The Regional Board should incorporate an explicit margin of safety into numeric target calculations The Regional Board does not provide an adequate margin of safety in the Draft TMDL, as there is no implicit or explicit margin of safety applied to the numeric targets. Pursuant to Section 303(d), TMDLs must include a margin of safety to reflect uncertainties regarding discharges and water quality. 33 U.S.C. § 1313(d); 40 C.F.R. § 130.7(c)(1) ("TMDLs shall be established at levels necessary to attain and maintain the applicable narrative and numerical WQS with seasonal variations and a margin of safety which takes into account any lack of knowledge concerning the relationship between effluent limitations and water quality.") (emphasis added); see also Minnesota Center for Environmental Advocacy v. U. S. Environmental Prot'n Agency, 2005 U.S. Dist. LEXIS 12652 (D.Minn.2005) (holding that EPA " must comply with the statutory and regulatory mandate to establish a margin of safety that takes into account any 	There appear to be two issues regarding margin of safety: first, that it should be applied to the numeric targets and second, that it may not be sufficient to ensure that water quality standards will be met. In response, the TMDL contains an explicit margin of safety in compliance with 33 U.S.C. sec 133(d). Because the numeric targets are based on the promulgated California Toxics Rule, there is little uncertainty that the targets will implement the water quality standards. Further, the issue of a water effect ratio, which would adjust the CTR targets is not being considered at this time, also adding to the certainty in calculating wasteload allocations for copper and nickel through the linkage analysis. Consequently, the margin of safety is applied to the wasteload allocation, which becomes the basis for the effluent limits. For mercury and selenium_additional numeric targets pertaining to

No.	Author	Date	Comment	Response
			lack of knowledge concerning the relationship between	fish tissue and bird egg ensure numeric targets are
			effluent limitations and water quality.").	attained.
			Thus, the Regional Board is required to include a	
			margin of safety and it must be sufficiently protective	
			to ensure that water quality standards are attained and	
			maintained by the TMDLs. <i>Id</i> .	
5.8			Here, as discussed above, the freshwater targets were	Please refer to the response to comment above. The
			calculated using the 50th percentile hardness. Again,	TMDL includes multiple targets for each constituent
			this means that approximately half-of-the-time the	including mercury to ensure protection from
			hardness values will be lower than this value and	impairment for all possible beneficial uses and the most
			pollutants will become more bioavailable. In addition,	protective targets. Achievement of the water, tissue,
			there are other uncertainties associated with mercury	and bird egg targets will adequately protect benthic and
			interactions between the water column and sediment. A	aquatic organism, wildlife, and human health from
			margin of safety is necessary to account for all of these	potential harmful effects associated with mercury and
			uncertainties.	other metals.
			Notably, the Regional Board did include in the	Please refer to the Margin of Safety section of the
			Calleguas Creek Watershed Toxicity TMDL " an	Calleguas Creek Watershed Toxicity TMDL. Explicit
			explicit margin of safety of 5% to the targets for	margin of safety of 5% was added to the targets for
			chlorpyrifos in the Calleguas and Revolon	chlorpyrifos in the Calleguas and Revolon
			subwatersheds to address uncertainty in the linkages	subwatersheds. Beside this, there was no other explicit
			between the water column criteria and fish tissue and	MOS included. For this TMDL, both implicit and
			sediment concentrations." Calleguas Creek Toxicity	explicit are included. The implicit MOS stems from
			TMDL at 6. The Regional Board should take a similar	the use of conservative assumptions made during
			approach in the Draft TDML and provide an explicit	development of multiple numeric targets to ensure
			margin of safety on the numeric targets.	sufficient protection under all conditions and
				conservative methods employed in developing the
			Although the Draft TMDL provides a 15% buffer to the	TMDL. Background loads are assigned to the TMDL
			WLAs for copper and nickel and calls it a margin of	and assumed to remain constant throughout
			safety, this buffer is not sufficient to ensure that water	implementation of the TMDL. This results in higher

No.	Author	Date	Comment	Response
			quality standards will be met. Instead, it is intended to	required reductions for the other sources. Calculation
			account for several non-conservative assumptions	of allocations is based on never exceeding numeric
			utilized in calculating the WLAs such using translators	target concentrations rather than the once in three year
			and the median flow rate. A true margin of safety is	exceedance referenced in the CTR. Calculations of
			needed to account for unknowns in the system, in	current loads and loading capacity for Mugu Lagoon
			addition to any corrections or buffers needed to	are based on the combined discharges from Calleguas
			compensate for the use of nonconservative	Creek and Revolon Slough (without any dilution
			assumptions. Thus, in order to establish an adequate	provided by tidal flushing), which over predicts actual
			margin of safety and obtain sufficiently protective	concentrations in the Lagoon. Additional 15% explicit
			numeric targets in the TMDL, the Regional Board	MOS is also included for copper and nickel to account
			should include an explicit margin of safety in	for the uncertainty resulting from the calculation of the
			calculating the numeric targets themselves. The	allowable load based on the median flow rate and
			resulting lower numeric targets will act as a 'safety	translator of each flow category. The 15% explicit
			net" (as the CWA intended) in the event that incorrect	MOS is determined sufficient to address the elevated
			assumptions and/or unknowns in the system lead to	flow category, but still account for the more
			greater pollutant bioavailability than expected.	conservative nature of low and average category.
5.9]	II. The Assumptions Underlying the Waste Load	There are two steps of model calibration for the model
			Allocations (WLAs) Are Not Fully Protective	applied to Calleguas Creek Metals TMDL. As
			In addition to uncertainties in the targets themselves,	described in the technical report, the first step of
			there are several problems with the calculation of the	calibration is hydrology. The calibration parameters are
			specific WLAs and LAs intended to meet the numeric	precipitation, evaporation adjustment factor and soil
			targets. First, there is much uncertainty with the model	coefficients, i.e. infiltration rate, field capacity, and
			itself primarily due to the lack of water quality data	porosity (saturated moisture). Most of the coefficients
			with which to validate and calibrate the model. Second,	are selected from literature values and adjusted slightly
			numerous non-conservative assumptions were used to	to match the timing and magnitude of hydrology.
			develop the WLAs and LAs set forth in the Draft	Precipitation and evaporation data were obtained and
			TMDL.	extended to allow model simulation up to 17 years.
			A. The models used to develop the WLAs should be	Topographic, soils, land use, and agricultural cropping
			calibrated and validated using sufficient water	information was used to develop the model
			quality data.	segmentation and input, and detailed streamflow data

No.	Author	Date	Comment	Response
			The Technical Report acknowledges that " limited	were selected to allow calibration over a 9 year period
			environmental data were available for comparison to	(WY 1994-WY 2002) and validation over a separate 6
			model results." Technical Document at 111. According	year period (WY 1988-WY 1993). The procedure and
			to the project modeler from Larry Walker Associates,	parameters used for hydrology are reviewed by
			the water quality data used for calibration came from 3-	Regional Board staff and believed to scientifically
			5 monitoring locations in the lower Watershed that had	appropriate.
			at most 10 water quality data points each (some	
			monitoring points had even fewer data points). This	Water quality calibration proceeds after hydrologic
			raises significant uncertainty as to the ability of the	calibration. Water quality calibration follows the same
			model to accurately predict water quality in the	principles as hydrologic calibration. The order of
			Calleguas Creek Watershed over a wide range of	calibration is as follows: temperature, sediment, TSS,
			conditions.	hardness, chloride, metals. For Calleguas Creek, many
				parameters are considered known and are not adjusted.
			Furthermore, the data used to validate the model is	The values of these parameters are within the range of
			extremely questionable. The modeler explained that the	available scientific literatures. The parameters that
			data or information used to validate the model did not	need to be adjusted for Calleguas Creek mainly are
			come from instream water quality data. Instead, the	partition coefficient and potency factor. Available in-
			consultant team used information such as agricultural	stream water quality data are from October 1,1987
			runoff data, pesticide-use data and road density	through December 31, 2004. For metals and selenium
			information. This method of validation does not	where data from October 1993 to December 2002 were
			provide a high level confidence in the model, as the	used for calibration of model parameters, and the latter
			relationship between these types of data and in-stream	data from January 2003 through December, 2004 were
			metal concentrations is not well-defined. A separate	used for validation. After several iteration to minimize
			data set containing in-stream water quality data is	relative and absolute errors, a set of best fit rates were
			necessary to validate the model. Moreover, as of May	developed. The values of those two parameters are
			9, 2000, Regional Board stall had not evaluated the	within reasonable range of available meratures.
			and validation. It is critical that Degional Deard staff	To summarize there are a large number of recomptors
			have full confidence in the model and the deta used for	that can be adjusted in model calibration Like any
			determining WI As and I As before issuing a Droft	that can be adjusted in model calibration. Like any
			determining whas and has before issuing a Draft	scientific investigation, model calibration is often a

No.	Author	Date	Comment	Response
			TDML for public comment. This does not appear to be	never-ending iterative process. Further improvement
			the case here. As a result, we have little confidence in	can be made as more data becomes available. So far,
			the sufficiency of the WLAs derived from the model to	the calibration processes performed and parameters
			actually meet the targets. At a minimum, a special	used for Calleguas Creek Metals TMDL are believed
			study should be pursued that collects enough data to	by the Regional Board staff to be appropriate and
			adequately validate the model and provide a reopener if	within the range of available scientific data and all data
			the results are inconsistent with the current WLAs. In	used for the calibration and validation have been
			addition, while we recognize the clear need for the 15%	reviewed and checked by the Regional Board staff.
			buffer provided for in the WLAs, we recommend that	Therefore, the proposed WLAs obtained from the
			an even higher buffer be applied to the WLAs to	calibrated model are believed to be appropriate and the
			address the large uncertainties inherent in the current	suggested 15% of margin of safety (MOS) for copper
			model.	and nickel is within a reasonable range.
5.10			B. The assumptions used in developing waste	
			load allocations in the Draft TMDL are	
			flawed and/or non-conservative.	
			In addition, several of the assumptions used in	
			developing waste load allocations are not sufficiently	
			conservative to be truly protective.	
			• Flow categories based on flow ranges with similar	Regional Board staff supported the development of
			pollutant concentrations were used to determine	flow categories to develop WLAs under dry weather
			loading capacity and allocations under dry weather	for several reasons. First, different constituents have
			conditions. Within each flow category, the median	maximum loadings at different dry weather flow rates,
			flow rate was used to establish the loading capacity.	and the flow categories will allow protective WLAs for
			Technical Report at 142. As discussed above, this	each constituent. Second, this approach has been used
			approach cannot ensure compliance with targets as	successfully in the Newport Bay TMDL in region 8.
			the median flow rate will fail to be sufficiently	Finally, the water column concentrations in many
			protective about half-of-the-time. Indeed, the	locations generally do not exceed concentration based
			stakeholder's own Technical Report admits that	targets. Under these conditions, the flow based
			'[t]here is uncertainty as to whether or not	wasteload allocations are more conservative than

No.	Author	Date	Comment	Response
			allocations based on those [flow] categories will	concentration based targets based on CTR.
			result in achievements of targets in the stream."	
			Technical Report at 165.	The statement 'There is uncertainty as to whether or
				not allocations based on those categories will result in
			Further, compliance assurance of WLAs based on	achievements of targets in the stream" is intended to
			flows will be very difficult. Heal the Bay has never	justify the imposition of explicit margin of safety. The
			seen discharge permits with multiple flows and	statement is placed at the beginning of the section on
			loadings before. How does the Regional Board	Margin of Safety and it is meant to justify the need for
			propose to enforce a WLA based on many different	an explicit MOS for copper and nickel. With the
			flows? Will there be numerous flow gauges	explicit margin of safety, as well as other discussion on
			installed in the Creek to determine the	the appropriateness of the median hardness for this
			instantaneous flow? Was the consultant's proposed	TMDL, staff opines that the allocations based on flow
			approach analyzed or questioned by staff? Was a	categories will result in achievement of the targets in
			concentration-based approach for Las and urban	the stream.
			runoff WLAs considered or evaluated by staff?	
			In general, concentration-based WLAs are much	
			easier to calculate with a much smaller margin of	
			error (thus requiring a lower buffer calculated in)	
			and are much easier to enforce. In order to simplify	
			implementation and ensure that the TMDL is in fact	
			enforceable, we urge the Regional Board to	
			consider revising the Draft TDML to include	
			concentration-based LAs as well as WLAs for	
			urban runoff.	
5.11			Translators were used to convert the dissolved	The method used for calculating translator in the
			critical condition loads to total recoverable critical	Calleguas Creek Metals TMDL is the partition
			condition loads for copper and nickel. However, the	coefficient equation, which means the fraction of the
			chosen translators are not always greater than the	total metal in the water that is dissolved (the translator)
			maximum translator calculated from actual	may be determined indirectly by means of a partition

No.	Author	Date	Comment	Response
110.		Duc	environmental data. As a result, the total allocations may be higher than is appropriate to actually meet water quality targets. The Regional Board should use translators based on the maximum translator calculated from environmental data.	coefficient. This method has been adopted and indicated in the EPA guidance on translators ("The Metals Translator: Guidance for Calculating A Total Recoverable Permit Limit From A Dissolved Criterion, EPA 823-B-96-007, June,1996"). EPA guidance indicates the strength of this approach that 'use of the partition coefficient may provide advantage over the dissolved fraction when using dynamic simulation for waste load allocation (WLA) or the total maximum daily load (TMDL) calculation and". For Calleguas metals TMDL, the model simulation involves a dynamic simulation and the translator is to be a function of adsorbent concentrations (e.g. TSS), developing a statistically robust translator is required. Therefore, the Regional Board staff considered the translators used in the model are appropriate for the
5.12			 Load allocations and WLAs for mercury in the Draft TMDL are based on the amount of suspended sediment at different flows. This approach is problematic as many steps and assumptions must be taken to move from in-stream numeric water column targets to LAs and WLAs based on suspended sediment. An example of such an assumption is that the TMDL calculation assumes that " a certain percent reduction in the suspended sediment loads will result in an equal percent reduction in water column and fish tissue mercury concentrations." Technical Report at 167. By contrast, other TMDLs have included allocations 	Regional Board staff notes that both the San Francisco Bay Mercury TMDL and the Calleguas Creek Metals and Selenium TMDL recognize the importance of sediment bound mercury. Mercury is a bioaccumulative pollutant that is primarily transported in sediment and is of concern in multiple media including water and fish tissue. Using suspended sediment loads as allocations allows linkages to both water and fish tissue targets. The reductions in sediment are based on the greater of either: 1) the reduction needed in water column concentrations to achieve water quality objectives; or 2) the reduction in fish tissue targets.

No.	Author	Date	Comment	Response
			that can be more easily derived from the numeric targets, thereby requiring fewer assumptions and mathematical gymnastics to calculate the allocations. For instance, the San Francisco Bay Mercury TMDL derives the annual mercury <i>sediment loads</i> from a suspended <i>sediment target</i> which requires fewer assumptions and leads to less uncertainty. This is turn leads to far more certainty with regard to actually attaining targets and thus water quality standards. In this case, as there are many non-conservative assumptions and calculations that have gone into developing sediment-based LAs and WLAs to achieve water column targets, the Regional Board should include a <i>substantial</i> buffer to the calculated allocations to ensure that numeric targets are met in the water column where the impairment is found	This approach is taken to ensure that all targets are achieved through the allocations. Considering only water allocations might not take into account reductions necessary to achieve fish tissue targets in some cases because of the relationship between settling of suspended sediments and methyl mercury production. The assumption of using an equal percent reduction to calculate suspended sediment allocations is based on the precedent of the Calleguas Creek Organochlorine and PCBs TMDL allocation process that was reviewed by a technical advisory committee and peer reviewers and approved by the LARWQCB, SWRCB and USEPA. The bioaccumulative nature of mercury and its tendency to associate with particulate matter is similar to OC pesticides and make the allocation process appropriate for mercury. Additionally, assigning suspended sediment loads helps to address concerns about sediment toxicity due to mercury. Finally, using suspended sediment is monitored in addition to water column concentrations of mercury. Finally, using suspended sediment loads provide a direct link to implementation actions in that mercury loadings are more likely to result from sediment discharges than from water discharges.
5.13			The model assumes that Mugu Lagoon is in equilibrium, but this has not actually been demonstrated. This is a big assumption to make without any support and calls for an additional amount of	A 'BATHTUB" model is applied to the Mugu Lagoon, which is the estuary of the Calleguas Creek Watershed. The Mugu Lagoon model is developed from the fundamental principal of mass balance and the entire

No. Author	Date	Comment	Response
		buffer.	lagoon is modeled of as one complete-mix system. The system can be considered to be in equilibrium on a daily basis, which means that diluting effect of the flood tide is neglected and the lagoon is modeled as a constant volume system to make the computation of concentration be in a conservative side and ensure that water quality standards will be met. This conservative simplifying 'bathtub' assumption provides an implicit margin of safety to the model calculation. The comparisons of model results with measured data presented in Technical Report have demonstrated this assumption.
5.14		The model fails to account for possible impacts of the pollutant loads on sediment toxicity: a significant issue for metals and selenium.	The model can be used to estimate metals content in the benthic sediment. The model estimates suspended sediment deposition during lower flows, and benthic sediment erosion during higher flows. Concurrently, the model tracks the metals content of the suspended and benthic sediment, and models the transfer of metals between the water column and sediment (i.e. partitioning). However, there is no model relating metal content in sediment to toxicity (i.e. there is no sediment metals content objective to compare model results with to assess toxicity). The only method currently available to assess metals toxicity in sediment is to collect the sediment, perform toxicity tests, and if toxicity is found run TIE/TRE type analysis. If the TIE/TRE indicates

No.	Author	Date	Comment	Response
				could then be used to evaluate metals loads and benthic sediment metals content and how they might affect
				sediment toxicity.
5.15			As recently verified by one United States District Court, " the TMDL must be established at a level necessary to ensure that the applicable water quality standards are met in each of the impaired waters for which the TMDL is prepared, in compliance with that cannot and do not ensure that water quality standards will be met. The Draft TMDL states that an explicit "margin of safety"1 (more appropriately called a buffer in this case) of 15% is established for the copper and nickel WLAs to account for these nonconservative model assumptions. However, based on the high number of critical nonconservative assumptions used throughout the model, this buffer number appears low. A more conservative WLA cushion is justified here, more in the range of 25-35%.	A margin of safety for the TMDL is designed to address any uncertainties in the analysis that could result in targets not being achieved in the waterbodies. To identify whether an explicit margin of safety is necessary for each constituent, a summary of the significant uncertainties in the TMDL analysis was developed and compared to the conservative assumptions used to address the uncertainty in the analysis. Although there is a sizable implicit margin of safety for cooper and nickel, two uncertainties were evaluated in more depth and considered to be significant enough to warrant an explicit margin of safety for these constituents. (1) The calculation of the allowable load is based on the median flow rate for each flow category. (2) The translation between dissolved allowable loads and total allowable loads is calculated using the median translator for each flow category. The allowable load calculated using the median flow rate and median translator were compared to the variable allowable load calculated using the model flow rate and model translator and compared to the allowable load generated using the environmental data flow and translator. The comparison showed that for the flow and average flow category, the chosen approach was fairly conservative, but it was less conservative for the elevated flow category. A 15% margin of safety was determined to be sufficient to

No.	Author	Date	Comment	Response
				address the elevated flow category, but still account for the more conservative nature of the low and average flow category.
			In addition, the reasoning set forth in the Draft TMDL for <i>not</i> including any 'buffer'' in calculating the mercury and selenium WLAs based on the same model is inappropriate. Notably, the Draft TMDL acknowledges that '[f]or both mercury and selenium, data are insufficient to fully assess whether or not the wildlife targets are being achieved. Therefore, there is some uncertainty as to whether or not the allocations will result in compliance with wildlife targets." Technical Report at 167. Yet, no buffer is set for these two toxics. What is the justification for this? Clearly, significant uncertainty is present for the mercury and selenium WLAs, and a buffer of 15-35% therefore should be included for these WLAs as well.	For mercury and selenium, the model is used to estimate current loads from which the percent reductions are taken to determine allowable loads. The model appears to overestimate loading much of the time. Plus, the development of allocations for selenium and mercury incorporates other individual implicit MOS factors. Therefore, no additional explicit margin of safety is considered for these two constituents.
5.16			C. A TMDL must be developed for zinc in Mugu	
			Lagoon. The Technical Report maintains that there are no longer zinc impairments in the Watershed based on recent data, but does not contain an analysis of all available data. Yet, presumably based on the Technical Report's claim, the Draft TDML provides numeric targets for zinc and describes zinc compliance monitoring, but fails to contain any WLAs or LAs for zinc. A de-listing for zinc was not proposed in the State Water Board's draft 2006 303(d) List. Thus, zinc is still	The SWRCB 2004 report titled: Water Quality Control Policy for Developing California's Clean Water Act Section 303(d) List provided guidance on using the collected data to determine if each of the listed metals and selenium continue to cause an impairment in a listed reach. According to the 303(d) listing policy (SWRCB 2004) the allowable percent above criteria for delisting purposes varies between 6 and 8 percent based on the sample size. Tables 10-21 in Current Condition section of the Technical Report document show the

on the State's 303(d) List. The Consent Decree requires percent above criteria for all reaches in	the watershed.
the completion of a TMDL for zinc in Mugu Lagoon by The data presented in Table 10 show 09	% exceedance in
March 22, 2006 (with a backstop of March 22, 2007). Mugu Lagoon of the dissolved zinc crit	eria. Based on
1999 USEPA Consent Decree. If the Regional Board is the results presented in the Technical re	port document,
proposing to de-list zinc, pursuant to the Consent impairment due to zinc in the watershed	d is not
Decree, it must prepare a detailed report describing the occurring. Regional Board staff had disc	cussed with the
analysis and conclusions that led to this decision. In State Board staff and indicate that the cr	urrent data
this case, the parties have not been notified and a show that Calleguas Creek watershed m	neet the
detailed report was not prepared. Indeed, there is no requirement for delisting.	
Staff Report associated with this Draft TMDL.	
Moreover, there is no documentation or evidence The Calleguas Creek Watershed Manag	gement Plan
provided to show that the levels of zinc in Mugu (CCWMP) had sent a letter to the State	Board on
Lagoon are at natural background levels, as required by January 18, 2006, to request delisting of	f zinc for the
the Ocean Plan for an ASBS. This must be established Calleguas Creek watershed from the 30	3(d). On
in order to propose any de-listing for zinc, if this is January 27, 2006, Larry Walker and As	sociate on
what the Regional Board is in fact doing. behalf of the CCWMP submitted to the	State Board
supplementary information to further su	ipport the
Given the above, the failure to establish a TMDL, with removal of the listing from the 2006 30.	3(d) list.
corresponding WLAs and LAs, will comprise a Regional Board staff also understand th	at USEPA 1s
violation of the Consent Decree. A TMDL for zinc in preparing a letter to Consent Decree pla	untiff informing
Mugu Lagoon that meets all water quality objectives, them that allocation for zinc are not nec	cessary.
including ASBS standards, should be completed and	1 1
adopted by March 22, 2007. As mentioned above, ASBS standards d	to not apply to
Mugu Lagoon therefore the comment the	hat a TMDL for
Zinc in Mugu Lagoon that meets ASBS	standards,
snould be completed is not valid	
J.17 IV. Monitoring Plan	
A. Wiomitoring should begin within 6 months of the offortive date of the TMDI	
The Draft TMDL requires monitoring efforts to start Comment noted. The implementation s	schedule for

No.	Author	Date	Comment	Response
			within one year of the effective date of the TMDL.3	tasks 3a and 3b are changed from 6 months to 3 months
			Draft TMDL at 14. A one-year timeframe to initiate	to address the concern. See revised BPA, Table 7-19.2
			monitoring appears excessive, especially given that the	
			monitoring is designed to fit into the existing Calleguas	
			Creek Watershed TMDL Monitoring Plan. We suggest	
			a maximum of 6 months for responsible parties to	
			develop a monitoring plan and begin monitoring	
			efforts.	
5.18			B. Water column samples should be collected	
			monthly in all areas impaired by metals.	
			The Draft TMDL and Technical Report acknowledge	Comment noted. The monitoring frequency has been
			that there is little existing water quality data for metals	changed from quarterly to monthly to address this
			in the impaired reaches of the Calleguas Creek	concern. See revised BPA, Table 7-19.1.
			Watershed. As a result, discharges and variability in the	
			system are not well characterized. Thus, it is vital	
			that the ambient monitoring and compliance monitoring	
			programs adequately characterize the Watershed and	
			evaluate the progress being made to remove the metal	
			impairments. The Draft TDML requires quarterly	
			sampling of in-stream water quality. In contrast, the	
			Ballona Creek Metals TMDL calls for monthly	
			sampling of metals at each monitoring location. In	
			order to adequately characterize the Calleguas Creek	
			Watershed and capture variability, the frequency of	
			sampling should be increased. Instream water quality	
			should be sampled on a monthly basis.	
			The designated sampling locations are also	In addition to the designated sampling locations for the
			problematic. The Draft TMDL specifies that the	Calleguas Creek Watershed TMDL Monitoring Plan
			samples " will generally be collected at the base of	(CCWTMP), other samples will be collected

No.	Author	Date	Comment	Response
			Revolon Slough and Calleguas Creek and in Mugu	concurrently at representative agricultural and urban
			Lagoon"Technical Report at 182. Compliance	runoff land use stations as well as at POTWs in each of
			sampling locations should include points slightly	the subwatersheds and analyzed for GWQCs, copper,
			upstream of the base of Revolon Slough and Calleguas	mercury, nickel, selenium, and zinc. The location of
			Creek, in order to better understand the source of	the land use stations will be determined before
			pollution. Compliance should also be evaluated at the	initiation of the CCWTMP and approved by the
			input locations of numerous discharges into Mugu	Executive Officer.
			Lagoon and Calleguas Creek. For instance, there are	
			numerous inputs into Mugu Lagoon from drainages	
			that pass through the Mugu Naval Air Base. Thus,	
			these potential sources of metals should be fully	
			characterized.	
5.19			C. The Calleguas Creek Watershed Metals and	Comment noted. The following language is added to
			Selenium Monitoring Program should be made	the Monitoring Program section: "The proposed
			available for public review and comment before	CCWTMP shall be made available for public review
			Executive Officer or Regional Board approval	prior to approval by the Executive Officer"
			The Draft TMDL Implementation Schedule requires	
			the submittal of a monitoring program to the Regional	
			Board for Executive Officer approval. In order to make	
			the development of the Draft TDML a true stakeholder	
			process, the Regional Board should revise the TMDL	
			to make the monitoring plan available for stakeholder	
			input before it is approved.	
5.20			V. The Regional Board Should Not Promote Special	Comment noted. The Implementation Schedule is
			Studies That Aim To Increase The Amount Of	revised to clarify that Special Studies 1, 2, and 3 are
			Pollution Allowed In Calleguas Creek	optional.
			Watershed.	
			The Draft TMDL outlines five special studies, along	
			with corresponding study completion dates, in the	
			Implementation Schedule. Only two of these special	

No.	Author	Date	Comment	Response
			studies are identified as 'optional." Draft TMDL at 12	
			and 13. While we agree that special studies that provide	
			vital information to the TMDL should be required by	
			the Regional Board, the Draft TMDL should not	
			require or recommend special studies solely aimed at	
			increasing (i.e. softening) TMDL targets and WLAs.	
			For instance, special study #5 suggests calculating a	
			WER in Revolon Slough because " monitoring	
			demonstrated that the saltwater copper CTR criterion	
			was exceeded in the Revolon Slough." Draft TMDL at	
			13. The exceedance of a standard is not a valid reason	
			to explore increasing that standard. Actions such as	
			calculating a WER or SSO and evaluating natural	
			sources exclusions should be pursued separately from	
			the TMDL process entirely, and certainly should not be	
			promoted by the Regional Board. By presenting these	
			special studies within the Draft TMDL, the Regional	
			Board could be interpreted as implying that these	
			studies are integral to the TMDL itself. They are not.	
			The Regional Board should revise	
			this section on Special Studies to remove these Special	
			Studies from the TMDL, or at the very minimum, make	
			clear that those studies that are not appropriate for a	
			TMDL (such as Special Study #1) are labeled as	
			"optional." Further, we urge the Regional Board to	
			develop and include more appropriate and useful	
			special studies in the TMDL, such as collecting	
			additional water quality data over time to validate the	
			HSTF model.	
5.21			VI. The Proposed Implementation Schedule In the	

No.	Author	Date	Comment	Response
			Draft TMDL Improperly Fails To Include	
			Enforceable Milestones And All Appropriate	
			Compliance Goals.	
			A. The Implementation Schedule should include	
			milestones to ensure progress toward meeting	
			final WLAs and numeric targets	
			An effective Implementation Plan must have	Comment noted. The BPA is revised to include the
			enforceable milestones to ensure TMDL compliance.	milestones to achieve final WLAs and LAs. See revised
			The Implementation Schedule in the Draft TMDL does	BPA, Table 7-19.2 for detail.
			not provide any milestones or other means to track the	
			progress of responsible parties and ensure that waste	
			loads are being reduced. The only reference to progress	
			milestones is a statement that at 5, 10 and 15 years after	
			the effective date of the TMDL, milestones <i>may</i> be	
			developed based on BMP implementation. Draft	
			TDML at 20. This allows the responsible parties at	
			least five years, and potentially many more, of	
			maintaining the status quo before making any	
			measurable progress towards meeting TMDL targets	
			and water quality standards. We urge the Regional	
			Board to expressly include appropriate and measurable	
			milestones for reductions in the Implementation	
			Schedule. For instance, POTWs should have a required	
			25%, 50%, and 100% reduction in the current loading	
			minus the waste load allocation at 5, 8, and 10 years	
			after the effective date, respectively. Agricultural	
			Dischargers and Permitted Stormwater Dischargers	
			should have a required 25%, 50% and 100% reduction	
			in the current loading minus the waste load allocation	
			at 5, 10, and 15 years, respectively. These interim	

No.	Author	Date	Comment	Response
			compliance targets must be enforceable, in order to	
			ensure steady progress towards the final numeric	
			targets. This is particularly true, where, as here, the	
			WLAs and LAs are based on a model and assumptions	
			that cannot ensure that the final targets will be met.	
			Basing interim targets on percent reductions in waste	
			loading is a direct, enforceable and effective way to	
			structure the TMDL.	
5.22			B. Final compliance milestones in the	
			Implementation Plan should ensure that	
			numeric water quality standards are met – the	
			Waste Load Allocations should not be used as	
			the sole compliance endpoint	
			Final compliance points are provided in the Draft	Comment noted. The BPA is revised to clarify that
			TMDL's Implementation Schedule. For instance,	water quality standards for copper, mercury, nickel, and
			within 10 years of the TMDL effective date, POTWs	selenium shall also be meet as final WLAs and LAs are
			must achieve final WLAs, and within 15 years,	achieved by POTWs, Agricultural Dischargers, MS4s,
			Agricultural Dischargers and Permitted Stormwater	Caltrans, the Naval Air Weapons Station at Point
			Dischargers must achieve final WLAs and LAs.	Mugu, and general industrial and construction
			However, the Draft TMDL does not provide an explicit	permittees.
			final compliance requirement for meeting numeric	
			targets. Presumably, these are implicitly intended to be	
			the same as the 10 year and 15 year compliance dates	
			for WLAs and LAs referenced above. For instance the	
			Draft TMDL hints at this implicit requirement by	
			stating that the first goal of the monitoring plan is to	
			"determine compliance with copper, mercury, nickel,	
			and selenium numeric targets at receiving water	
			monitoring stations and at POTWs discharges"Draft	
			TDML at 14. However, an explicit statement to this	

No.	Author	Date	Comment	Response
			effect should be included in the Implementation	
			Schedule. See e.g., Calleguas Creek Nitrogen	
			Compounds and Related Effects TMDL at 6 (7/16/03)	
			(defining the final compliance point as 'final	
			achievement of ammonia and oxidized nitrogen	
			standards.").	
			An explicit final compliance point for meeting the	
			numeric targets is particularly important in this TMDL	
			as currently proposed since there is no guarantee that	
			meeting the WLAs and LAs will result in attainment of	
			the numeric targets. Unlike the majority of TMDLs	
			developed in the Los Angeles Region, the WLAs in the	
			Draft TMDL are not concentration-based allocations	
			(the numeric target multiplied by the discharge flow).	
			Rather, in this case, multiple assumptions and steps	
			have gone into developing the WLAs and LAs in this	
			TMDL. The regulations stipulate that "TMDLs shall	
			be established at levels necessary to attain and maintain	
			the applicable narrative and numeric water quality	
			standards"40 C.F.R. § 130.7(c)(1). Thus if WLAs	
			are met but numeric targets are not met, the ultimate	
			goal of the TMDL will be compromised. As stated in	
			the Technical Report, '[a]chievement of the water,	
			tissue, and bird egg targets named above will	
			adequately protect benthic and aquatic organisms,	
			wildlife, and human health from potentially harmful	
			effects associated with metals and selenium." Technical	
			Report at 37. Clearly, meeting the <i>targets</i> will ensure	
			that beneficial uses are attained, but meeting the WLAs	

No.	Author	Date	Comment	Response
			does not provide this same guarantee. Thus, a final requirement for compliance with numeric targets must be included. We therefore urge the Regional Board to add the following language to Items 25 and 26 in the Implementation Schedule of the Draft TMDL: "Achievement of Final WLAs and numeric targets for copper, mercury, nickel, selenium, and zinc."	
6.1	Department of Transportation	5/16/06	 The California Department of Transportation (Department) strongly supports the Regional Board's efforts to protect human health and water quality. To that end, we appreciate the opportunity to review the subject report, and offer the following comments: 1. In order to show that reasonably foreseeable alternatives for complying with the TMDLs or mitigating for impacts attributed to the alternatives have been prudently analyzed, the Economic Analysis of Implementation (Section 13.9, page 187) should provide realistic costs. Listed below are some of our specific concern: In Table 93 (page 189), the low and high annual costs for the development of an Urban Water Quality Management Plan for the entire watershed are \$200, 000 and 500,000. Annual costs for improving the street sweeping program range from zero to 460,000. Combined costs range from \$2000,000 to 960, 000. The Department owns approximately 85 miles of highways, 2 maintenance stations, and 8 park-and-ride facilities within the Calleguas Creek watershed. This Department Right-of- 	Comment noted Comment noted. The Economic Analysis of Implementation needs to be revised to provide more accurate estimated cost. Addition information on annual cost for implementation from Department of Transportation would be really helpful to revise the Economic Analysis.

No.	Author	Date	Comment	Response
			way (ROW) total 875 acres, but represents only	
			.4% of the total area of the watershed. If the	
			Department 's share of the annual costs were	
			based on this run off share, it would range from	
			\$800 to 3,840. A budget of this magnitude	
			would not provide enhanced sweeping for one	
			day. Given the small fraction of runoff the	
			Department contributes to the watershed, the	
			Department's equitable annual loading and cost	
			share allocation should be based on realistic	
			data.	
			• Table 93 (page189) indicates that through	
			participation in national activities, \$10,000 will	
			be required to reduce the content of the copper	
			in brake pads. This too is unrealistic. It is not	
			clear what type of the national activities and	
			participation level are expected or how this	
			reduction is likely to occur. The sources control	
			of copper in break pads is beyond our control.	
			We do not have the authority to require	
			suppliers or consumers to use any alternative	
			material. Lobbying alone for legislation to	
			change brake ad composition will cost much	
			more than \$10,000 and will not guarantee a	
			successful out come.	
			• Table 94 states that the Caltrans' cost	
			information for the Department's BMP Retrofit	
			Pilot Program was 'hot adjusted based on	
			relative land costs in Ventura County." Please	
			note that the Department 's BMP Retrofit Pilot	

No.	Author	Date	Comment	Response
			Program did not include the cost of land, which was already owned by the Department. Therefore, this significant cost need to be added to this estimate.	
6.2			2. The TMDL should analyze the reasonably foreseeable environmental impacts that could impede the ability to perform activities to comply with the TMDL. Such impacts include: Traffic during construction of BMPs, increased traffic, dust, and noise generated by freeway and highway maintenance activities (such as street sweeping); partial blockage of the Department's right-of-way by BMPs (causing future widening to be more difficult of impossible); and diversions of natural drainage patterns.	The CEQA check list has been revised to incorporate to comments received at the CEQA Scoping meeting. Please refer to the CEQA check list posted on Regional Board web site at <u>http://www.waterboards.ca.gov/losangeles/html/bpaRes/bpa.html</u>
6.3			 The Department is concerned that the Selenium objective will not be achievable, because background sources (e.g., groundwater seepage) are primary sources of this contaminant. Significant but impracticable reductions is the background loads are necessary to achieve the selenium targets. 	Regional Board staff agree. The Implementation Plan include a special study to identify groundwater with high concentrations of selenium that is either being discharged directly to the stream or used as irrigation water. The investigation will focus on areas where groundwater has a high probability of reaching the stream and identify practical actions to reduce the discharge of the groundwater to the stream. The analysis will include an assessment of the availability of alternative water supplies for irrigation water, the costs of the alternative water supplies and the costs of reducing groundwater discharges.
6.4			4. The Department commends the development of site-specific objective to effectively protect the environment without causing unnecessary	Regional Board staff agree. Several special studies are included in the implementation plan to conduct site- specific objective studies to address the concern.

No.	Author	Date	Comment	Response
			environmental impacts or excessive burden on the	Please see the Implementation Schedule, Table 7-19.2
			stakeholders.	for detail.